A REMARK ON M. M. DAY'S CHARACTERIZATION OF INNER-PRODUCT SPACES AND A CON JECTURE OF L. M. BLUMENTHAL ${ }^{1}$

I. J. SCHOENBERG

1. A space of elements a, b, \cdots, with a distance function $a b$ is said to be semimetric provided $a b=b a>0$ if $a \neq b$, and $a a=0$. A reallinear space of elements f, g, \cdots is said to be semi-normed provided a function $\|f\|$ is defined in S having the usual properties of a norm with the exception of the inequality $\|f+g\| \leqq\|f\|+\|g\|$, which is not assumed. Evidently $\|f-g\|$ is a semimetric in the sense of the first definition.

A semimetric space is called ptolemaic provided that among the distances between any four points a, b, c, d Ptolemy's inequality

$$
\begin{equation*}
a b \cdot c d+a d \cdot b c \geqq a c \cdot b d \tag{1}
\end{equation*}
$$

always holds. It is known that a real inner-product space is ptolemaic. ${ }^{2}$ Recently L. M. Blumenthal has orally raised the question as to the validity of the converse proposition in the following sense: Let the real normed space S be ptolemaic; does it follow that its norm springs from an inner product? His conjecture in the affirmative is verified in a somewhat more general setting by the following theorem.

Theorem 1. Let S be a real semi-normed space which is ptolemaic. Then $\|f\|$ is a norm which springs from an inner product, i.e., S is a real inner-product space.
2. This theorem is closely related to the characterizations of innerproduct spaces among normed linear spaces. It was shown by Jordan and von Neumann [2] that a normed linear space S is an innerproduct space if and only if we have the identity

$$
\begin{equation*}
\|f-g\|^{2}+\|f+g\|^{2}=2\|f\|^{2}+2\|g\|^{2} \quad(f, g \in S) \tag{2}
\end{equation*}
$$

M. M. Day has shown (Theorem 2.1 [1]) that S is an inner-product space if we require only that (2) holds for f and g on the unit sphere. In other words, he has shown that (2) may be replaced by the condition

[^0]$$
\|f-g\|^{2}+\|f+g\|^{2}=4, \quad(\|f\|=1,\|g\|=1)
$$

I wish to point out now that Day's condition (3) may be weakened still further as stated by the following theorem.

Theorem 2. The real normed space S is an inner-product space if it has the property that

$$
\|f-g\|^{2}+\|f+g\|^{2} \geqq 4, \quad(\|f\|=1,\|g\|=1)
$$

Proof. ${ }^{3}$ As in all characterizations of inner-product spaces, it suffices to assume that S is 2-dimensional, and hence is a Minkowskian plane with a gauge curve

$$
\Gamma:\|f\|=1
$$

which is convex and has the origin 0 as center. The problem now amounts to showing that Γ is an ellipse. Let f and g be two points on $\Gamma(f \neq \pm g)$ and let us see what the inequality (4) means in geometrical terms. Consider the parallelogram of vertices $f, g,-f,-g$. Draw the two diameters of Γ that are parallel to the sides joining f to g and f to $-g$, and denote their euclidean half-lengths by α and β, respectively. Let (x, y) be the oblique coordinates of the point f in the system formed by these diameters. We now find that

$$
\|f-g\|=2|x| / \alpha, \quad\|f+g\|=2|y| / \beta
$$

which allow us to rewrite (4) as

$$
\begin{equation*}
\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}} \geqq 1 \tag{5}
\end{equation*}
$$

The condition (4) amounts therefore to the following geometric property of the curve Γ : If $A A^{\prime}$ and $B B^{\prime}$ are any two distinct diameters of Γ and $M M^{\prime}$ and $N N^{\prime}$ are its diameters parallel to $A B$ and $A B^{\prime}$, respectively, then none of the points $A, B, A^{\prime}, B^{\prime}$ are ever inside the ellipse having $M M^{\prime}$ and $N N^{\prime}$ as conjugate diameters.

Let us assume now that by some means we have found an ellipse E with center 0 , enjoying the following properties: (i) No point of Γ is inside E, (ii) E and Γ have the distinct pairs of opposite points A, $A^{\prime}, B, B^{\prime}$ in common. We claim now that E and Γ must coincide. Indeed, draw the diameters $M M^{\prime}$ and $N N^{\prime}$ of Γ as above. Then E must

[^1]pass through their end points $M, M^{\prime}, N, N^{\prime}$, otherwise the ellipse E_{1} of conjugate diameters $M M^{\prime}$, and $N N^{\prime}$, which evidently contains E, would contain the four points $A, B, A^{\prime}, B^{\prime}$ inside, which contradicts the property of Γ derived from (4). The process may now be repeated with any of the two pairs like $M, M^{\prime}, A, A^{\prime}$, leading to four new and distinct pairs of points of E which are common with Γ. We reach in this way common points of E and Γ which are evidently dense on E and the identity between E and Γ follows.

There still remains to show how to obtain an ellipse E with the properties (i), (ii) used above. Let E be an ellipse ${ }^{4}$ of center 0 , inscribed in Γ, and having the maximal area among all such ellipses. We claim that E enjoys the properties (i), (ii). Indeed, let us assume this not to be the case; rather let Γ and E have only the points A and A^{\prime} in common. An affine transformation shows that we lose no generality by assuming E to be the circle $x^{2}+y^{2}=1, A=(1,0)$, $A^{\prime}=(-1,0)$. Consider now the one-parameter family of ellipses $x^{2} / a^{2}+y^{2} / b^{2}=1$ passing through the four fixed points $\left(\pm 1 / 2^{1 / 2}\right.$, $\pm 1 / 2^{1 / 2}$). Among them the circle E has least area. If a is less than 1 and sufficiently close to 1 , it is clear that the corresponding ellipse is wholly inside Γ, which contradicts the maximal area property of the circle E.
3. We are now able to prove Theorem 1 in a few lines. Let us first show that the semi-norm $\|f\|$ is a norm, i.e., satisfies

$$
\begin{equation*}
\|f+g\| \leqq\|f\|+\|g\| . \tag{6}
\end{equation*}
$$

Applying Ptolemy's inequality (1) to the points

$$
a=0, \quad b=f, \quad c=(f+g) / 2, \quad d=g \quad(f \neq g)
$$

we find that

$$
\|f\| \cdot\left\|\frac{f-g}{2}\right\|+\|g\| \cdot\left\|\frac{f-g}{2}\right\| \geqq\left\|\frac{f+g}{2}\right\| \cdot\|f-g\|
$$

and dividing this inequality by $\|f-g\| / 2$ we find that

$$
\|f\|+\|g\| \geqq\left\|\frac{f+g}{2}\right\| \cdot 2=\|f+g\|
$$

which proves (6). Thus S is a real normed space.
Applying again Ptolemy's inequality (1) to the points

$$
a=f, \quad b=g, \quad c=-f, \quad d=-g
$$

[^2]we obtain
\[

$$
\begin{equation*}
\|f-g\|^{2}+\|f+g\|^{2} \geqq 4\|f\| \cdot\|g\| \quad(f, g \in S) .^{5} \tag{7}
\end{equation*}
$$

\]

This plainly implies (4) and now S is an inner-product space by Theorem 2.
4. The ptolemaic inequality (1) was introduced in [3] in order to formulate a result of Menger in the following improved form: A simple metric arc γ is congruent to a segment if and only if (α) γ has vanishing Menger curvature in all its points, (β) Ptolemy's inequality holds throughout γ.

In view of this result, Theorem 1 now suggests the following question: Let γ be a simple arc in a linear normed space S with the property that γ has vanishing Menger curvature in all its points. For which spaces S, other than inner-product spaces, is it true that γ is congruent to a segment?

That the answer is not unconditionally affirmative is shown by the following counter-example due to L. M. Blumenthal: Let S be the 2-dimensional space of points $f=(x, y)$ with the norm $\|f\|=|x|$ $+|y|$. Let the arc γ be the polygonal line of successive vertices $(0,1)$, $(0,0),(1,0),(1,1) . \gamma$ is seen to be "locally straight," hence of vanishing curvature in all its points. However, the distance between its end points is equal to 1 , which is different from the sum 3 of the lengths of its three component segments. The arc γ is therefore not congruent to a segment.

References

1. M. M. Day, Some characterizations of inner-product spaces, Trans. Amer. Math. Soc. vol. 62 (1947) pp. 320-337.
2. P. Jordan and J. von Neumann, On inner products in linear metric spaces, Ann. of Math. (2) vol. 36 (1935) pp. 719-723.
3. I. J. Schoenberg, On metric arcs of vanishing Menger curvature, Ann. of Math. (2) vol. 41 (1940) pp. 715-726.

University of Pennsylvania and University of California, Los Angeles

[^3]
[^0]: Received by the editors March 24, 1952.
 ${ }^{1}$ This work was performed on a National Bureau of Standards contract with the University of California at Los Angeles and was sponsored (in part) by the Office of Scientific Research, USAF.
 ${ }^{2}$ See [3, p. 716], in the list of references at the end of this note.

[^1]: ${ }^{3}$ Our proof of Theorem 2 is implicitly contained in Day's elegant proof of the sufficiency of (3). His proof actually establishes the sufficiency of the weaker condition (3^{\prime}) $\|f-g\|^{2}+\|f+g\|^{2} \leqq 4$ ($\|f\|=1,\|g\|=1$). In dealing with (4) we apply Day's procedure "from the inside out," as Day himself does in another connection (See [1, p. 328, proof of Theorem 4.2]).

[^2]: ${ }^{4}$ Its existence is clear; its unicity is irrelevant for our purpose.

[^3]: ${ }^{5}$ It is interesting to notice the equivalence of the conditions (2) and (7). Clearly (2) implies (7) formally; that (7) implies (2) is just being shown.

