
ORDERED VECTOR SPACES

M. HAUSNER AND J. G. WENDEL

1. Introduction. An ordered vector space is a vector space V over the

reals which is simply ordered under a relation > satisfying :

(i) x>0, X real and positive, implies Xx>0;

(ii) x>0, y>0 implies x+y>0;

(iii) x>y if and only if x—y>0.

Simple consequences of these assumptions are: x>y implies x+z

>y+z;x>y implies Xx>Xy for real positive scalarsX; x > 0 if and only

if 0>-x.
An important class of examples of such V's is due to R. Thrall ; we

shall call these spaces lexicographic function spaces (LFS), defining

them as follows:

Let T be any simply ordered set ; let / be any real-valued function

on T taking nonzero values on at most a well ordered subset of T.

Let Vt be the linear space of all such functions, under the usual

operations of pointwise addition and scalar multiplication, and define

/>0 to mean that/(/0) >0 if t0 is the first point of T at which/ does

not vanish. Clearly Vt is an ordered vector space as defined above.

What we shall show in the present note is that every V is isomorphic

to a subspace of a Vt.

2. Dominance and equivalence. A trivial but suggestive special

case of Vt is obtained when the set T is taken to be a single point.

Then it is clear that Vt is order isomorphic to the real field. As will

be shown later on, this example is characterized by the Archimedean

property: if 0<x, 0<y then \x<y<px for some positive real X, p.

Returning to the general case let V be any ordered vector space,

and V+ its set of positive elements. It is convenient to have a nota-

tion to indicate failure of the Archimedean property, as follows. Let

x, yE V+. If Xx<y for all positive real X, we say that x is dominated

by y and write x<s.y, or y^>x. Clearly the relation <C is nonreflexive,

nonsymmetric, and transitive; and x<SCy implies x<y.

For given x, yE V+, if neither of x and y dominates the other we

say that x and y are equivalent, and write x~y. This relation is char-

acterized by the existence of positive real X, ¡x such that Xx<y</*x,

and it follows that it is indeed an equivalence relation on V+. We

denote the class of elements of V+ equivalent to given x by [x].
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Now we observe that there is a natural ordering on the set of equiv-

alence classes; we define [x] <[y] to mean that x~5>y. This definition

is easily justified by the observation that if x^x', y^y1, and x^>y,

then x'^>y'. Our notation may be somewhat confusing; however,

[x]< [y] is to be thought of as meaning, roughly "[x] comes before,

or is more important than, [y]." An expression of frequent occurrence

in the sequel is [x]á [y]; this means that either x dominates or is

equivalent to y—hence that y does not dominate x.

In the case where V is an LFS, say V= Vt, it is easy to discern the

meanings of dominance and equivalence. In fact, /ii$>/2 means that

/i fails to vanish before f% does. More precisely, if /» is the first / for

which fi(t)7*0, then t\<h. From this it follows that/i~/2 if and only

if h=h, and that [fi]< [ft] if and only if t\<t%- In other words, the
ordered set of equivalence classes is order isomorphic to the under-

lying set T.

Lemma 2.1. If x»xi, x2, • • • , xn and X, Xi, X2, • • • , X„ are positive

real numbers, then

\X + XiXi + X2X2 +  • • •  + XfcXjfe 2> Xjfe+iXi+l +  • • •  + X„X„.

Proof. We have x>(«/¿X¿/X)xt- for all real ¡Jt>0; therefore (A/«)x

>/tX,x,-, and Xx>^(Xi+iX,t+i-r- ■ • • -f-X„xn). Hence

Xx -f X1X1 + X2X2 + • • • + A*Xi > fi(X*+i**+i + • • • + X„x„),

all positive real p, which is what we had to show.

Corollary 2.2. If {xt} is a set of elements of V+ no two of which

are equivalent, then the xt are linearly independent.

Proof. If there is linear dependence among the xt, we shall obtain

an equation of the form

Ax + X1X1 + X2x2 + • • • + Xt** = Xi+iXi+i + • • • + X„x„,

where all X's are positive and real, all x's belong to the given set, and

x dominates Xi, x2, • • • , xn. But, this, in view of Lemma 2.1, is a con-

tradiction.

Before stating the next lemmas it is convenient to introduce the

notion of absolute value, defined by: |x| =x, — x, or 0 according as

xGF+, -x£7+, or x = 0. Clearly the triangle inequality |x+y[

= |x|+|y| ano^ the multiplicative relation |Xx| =¡X||x| hold, for

x, y G V and real X.

Lemma 2.3.// [|x-y| ]á [|x-z| ], then [\x-y\]-¿[\y-z\].
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Proof. We are given that |x — z\ does not dominate |x—y\, and

must prove that \y — z\ does not dominate |x — y\. But if \y — z\

>X|x—y\ for all real X, then X[x — y\ <\y — z\ ^\x—y\+\x~z\ for

all X, so that (X— l)|x — y\ <\x — z\ for all X, which contradicts the

assumption.

Lemma 2.4. 7/x~|;y|, there is a unique X such that Xx= y or |Xx—y\

«x.

Proof. The uniqueness of X is immediate, for if Xi?^, we have

|(Xi—X2)x| g |XiX—y\ +|XîX—y\, and if both terms on the right

were zero or dominated by x, we should have x^Cx.

To show that one such X exists we have /¿x<|;y| Ox for some

positive real p, v. Let X' be the supremum of the numbers ¿u for which

/¿x<|;y|. Then for e>0 we have (X' — i)x<|y| <(X'+e)x; therefore

— ex< \y\ — X'x<ex. Take X=X' or —X' according as y is positive or

negative; changing signs if necessary we have — ex<y—Xx<ex.

Therefore either y— Xx = 0, or \y— Xx| <$Cx; this completes the proof.

Sufficient machinery is now at hand for the investigation of struc-

ture questions. The finite-dimensional case is very easy; although the

result is known [l, p. 240] we give it here as an illustration of the

method.

Theorem 2.5. Let V be a finite-dimensional ordered vector space. A

basis (ex, e2, • • • , en) can be chosen so that the ordering in V is lexi-

cographic, i.e.,
n

x = 22 A'e» > o

if and only if the first nonvanishing X,- is positive. In other words, V is

the lexicographic function space Vt on the ordered set T= (1, 2, • • •, »).

Proof. Let V+ be decomposed into equivalence classes as above,

and for each equivalence class t let et be an arbitrary element of it;

by Corollary 2.2 the set [et] is finite. That is, T= {t} is a finite set,

and we may choose the notation so that T= {l, 2, • • • , k] with

e{S>e¿2> • • • ^>ek ; clearly k does not exceed n = dim V.

Let yEV. If yt^O, then | y\ belongs to some equivalence class, say

\y\ ~eti. Applying Lemma 2.4 there is a uniqueXi such that | y—yxeh\

<&etl, or y=\xetv We may now repeat the process on y—\xetv if it is

not zero, and so on until the zero element is reached, as it must be

in a finite number of steps. Thus we see that y is indeed a linear com-

bination of the et; since y was arbitrary, it follows that the et consti-

tute a basis for V, and, moreover, that k = n. This completes the proof.
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Corollary 2.6. If V has the Archimedean property, then dim V=l.

Proof. There is only one equivalence class.

It should be pointed out that there is a high degree of arbitrariness

in the choice of basis for a finite-dimensional V. In fact, if A is any

lower triangular matrix with positive diagonal elements, then the

equation Ae{ = ei carries the basis (ei, e2, • • • , e„) into another

lexicographic basis (e{, e{, • • • , e¿). Conversely, any two bases are

connected by a transformation of this form.

3. The embedding theorem for general V. It is evident that no

such simple structure theorem will hold for arbitrary infinite-dimen-

sional ordered vector spaces. For example, let T be the set of positive

integers in their natural ordering and form the lexicographic function

space Vt. We get just the space of all real sequences, whose dimension

as a vector space is the power of the continuum. But no vector space

basis can be lexicographic in the sense of §2, for the set of equivalence

classes is in 1—1 correspondence with the points of T and therefore is

a countable set. A slight modification of this example shows that,

moreover, not every V is an LFS. Let V be the subset of Vt consist-

ing of finite linear combinations of characteristic functions ft, tÇz.T,

where/((i) =0 or 1 according as s differs from or equals /. The set of

equivalence classes of V is again isomorphic to T, so that if V were

an LFS, it would have to be isomorphic to Vt ; but this is impossible

since the dimension of V is ^0-

The truth lies somewhere between these extremes; we shall show

that associated with any V there is a unique Vt such that V is iso-

morphic to a "large" subspace of Vt. Before stating the precise result

we need a definition.

Let VT be an LFS, let t0ÇzT, and let C be the linear transformation

which truncates every/G Vt at t0—that is, Cf=g, where g(t) =f(t) for

t<t0 and g(t) =0 for 2^i0. We shall call C the cut determined by t0.

Theorem 3.1. Let V be an ordered vector space, let T be the set of

equivalence classes of V+, and for each t£zT let a representative vector

et& be selected. Form the space Vt, denoting the characteristic function

of the point t by ft. There is a mapping F of V to Vt satisfying the fol-

lowing requirements:

(i) F is linear;

(ii) F is 1-1 ;
(iii)  F is order preserving ;

(iv) F(et)=ft,tGT;
(v) UfEF(V) and C is any cut, then CfEF(V).
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This theorem has to be proved by a nonconstructive method. As a

first step in the transfinite induction process we have :

Theorem 3.2. Let Va be a proper subspace of V which is mapped

into VT by a function F: y—*y' satisfying (i)-(v) above. Let x(£V0,

and let Vx be the subspace spanned by x and V0. Then there is an ex-

tension of the mapping F having domain Vx and again satisfying

(i)-(v). (We are assuming that (iv) is not vacuously satisfied; in other

words that V0 contains all of the et.)

Proof. Let 5 be the set of equivalence classes [| x—y\ ] for yE V0.

We observe that 5 has no last element. In fact, suppose that [| x —y\ ]

= [\ x~ A ] f°r some zEVo and all y. Let / be the equivalence class to

which |x — z\ belongs; we have |x — z[ -—'6(, and therefore by Lemma

2.4 there is a constant X such that either x — z=Xe¡or |x — z—\et\ <3Ce<.

Since z+Xci is again an element of Vo, both alternatives yield con-

tradictions and we have the result.

Let R be a well-ordered subset of 5 which is cofinal in S, so that for

[\x—y\]ES there is an [|x — z|]G-R such that [|x—y\] < [|x—z\].

We index the elements of R by ordinals a less than some limit ordi-

nal 6, obtaining R= { [|x — za\]}, where a<ß implies [|x — za\]

<[\x — Zß\]. For each a<d let ta denote the equivalence class

[|x — za\]\ then ta<tß for a<ß.

From Lemma 2.3 it follows that ta= [|x — za\ ]á [|za~Z/s|]. and

therefore et<t is not dominated by \za — Zß\ for ß>a. Applying the

mapping F we find that F(efa) =fta is not dominated by | F{za) — F(zß) \

= | z„ — Zp |. Therefore z« (t) — Zß (t) =0 for t<ta. We can now define

the function x' which is to be the image in Vt, under the extension

of F, of the given element x. For any tET which is less than some

taER let x'(t) =za' (t), and for the remaining tET set x'(t) =0. This

definition is legitimate, for if t <ta and also t<tß, then zá (t)=Zß (t)

and the function x' so defined clearly vanishes except at the points

of a well-ordered set.

The mapping F is now extended to all of Vx = {Xx+y \ y E Va, X real}

by defining F(\x+y) =\x'+y'; we shall verify that F on Vx has the

properties (i)—(v).

The requirements (i) and (iv) are immediately seen to hold. In

order to prove (v) let C be any cut, and let /G F( Vx). The element /

has the form/=Xx'+xy', and therefore Cf=\Cx' + Cy'. If the t0ET

which determines C is less than one of the ta, then Cx' = CzJ and

Cf= C(Kzd +y') which by hypothesis is the cut of some element of F0.

If t0 exceeds all ta, then Cx'=x', Cf=\x'+Cy'=\x'+y{ for some

yiG V0, so that C/= F(\x+yi).
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We next show that the extension is 1-1 ; it is enough to prove that

x'r^y' for y G V<¡. Supposing the contrary let y' =x' for some y G V0.

Then y'(t) =zá (t) for t<ta, and therefore \y' — zá \ does not dominate

fta. Since F preserves order on V0, this implies that \y — za\ does not

dominate et{X. Hence ta= [\x — za\]^ [\y — za\]. Applying Lemma 2.3

we have [|x — za\] ^ [|x—y\] for all a. But R was cofinal in 5and S

has no last element; this contradiction yields the result. As a corollary

to this we can state the following. Let W be the set of t at which x'

does not vanish. Let y G V0 and let Y be the set of t at which y' does

not vanish. If there are any (£F which exceed all of the points of W,

let to be the least such. Then, it is not the case that y'(t) =x'(t) for all

t<t0. For otherwise, let C be the cut determined by to and apply C to

y'. We have Cy' =x', but Cy' is the image of some yiG V0.

Finally we have to show that the extension of F preserves order. Let

x>y, yGFo, and suppose that x'<y'. (We already know that

x'y¿y'.) Let to be the first point at which x'(t) 9^y'{t). We have x'(t0)

<y'(to), and by the corollary just proved t0 does not exceed all of the

points of W. Hence there is a taÇ£R such that t0<ta. x'(t0) =zj (t0)

<y'(t0), but zj (t) =y'(t) iort<ta. Therefore z¿ <y'. Since F on V0 is

order preserving we have za<y. Then x>y>za, so that y — za<x — za

and x — za is not dominated by y — za. Therefore ¿«=[|x — za\]

= [\y — z<*\]. But then y'(t)=z¿(t) for t<ta, and in particular for

t = t0.

This contradiction shows that x>y implies x'>y'. In a similar

way we can show that x<y implies x'<y'. Therefore, if Xx+y>0

with X>0 we have x> — y/X, x'> — y'/X, and soXx'-r-y'>0; a similar

calculation yields the result for negative X. This completes the proof

of (iii) and of the theorem.

Proof of Theorem 3.1. F's satisfying the hypotheses of Theorem

3.2 surely exist, since we may take, for example, Vo equal to the span

of the et and define F to be the linear extension of the function defined

by (iv), the et being linearly independent by Corollary 2.2. We par-

tially order the set of all such mappings by the definition Fj < F2 if F2

is a proper extension of Fi. Clearly the hypotheses of Zorn's lemma are

fulfilled, and there is a maximal F. The domain of F is all of V, for

otherwise by Theorem 3.2 F has a proper extension. Q.E.D.
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