
ON THE PROPERTIES OF CERTAIN CONTINUED FRACTIONS

EVELYN FRANK

1. Introduction. This paper is concerned with a development of

the properties of a new class of continued fractions

,.   ,n   ,        ,   *"(! - Wo)3 1 kl^ - 7W^Z l
(1.1)   ¿o7o + -

7o3 — ¿m + 7iZ —  ^272 + • • •

in which the kp and 7P, p = 0, 1, • ■ • , are constants and |7p| j&\.

A special class of (1.1) are the continued fractions

(1 - 7o7o)z       1       (1 - 7i7i)z       1
(1.2)        7o H-:-     —      -;-      —

7oZ — 7i +        7iz — 72 + • • •

where |7P| 5¿1. These were first discussed by Schur [ö]1 with

|7p| <1 in connection with functions bounded in the unit circle.

In §2 it is shown that to an arbitrary power series there correspond

continued fractions (1.1), and, conversely, to every such continued

fraction there corresponds a power series which agrees with the

power series for the 2ptW and (2p + l)t\i approximants of the con-

tinued fraction up to and including the terms involving zp and zp~1,

respectively. An important new feature which is given in §3 is the

simple algorithm for the expansion of a power series into a continued

fraction (1.1), and, conversely, for the computation of the cor-

responding power series from the continued fraction. Heretofore this

computation has been exceedingly cumbersome.

In §4 conditions under which these continued fractions converge to

the corresponding power series are considered, in particular, if the

generating function is meromorphic. In §5 convergence regions for

the expansions (1.1) are found, and in §6 convergence regions for the

continued fraction whose approximants are the even and odd ap-

proximants of (1.1). In §7 certain transformations of (1.1) are dis-

cussed.

2. Continued fraction expansions for arbitrary power series. Let

the function /o(z) be expanded into a power series

(2 • 1) fo(z) ~ Coo + CoiZ + C02Z2 + • • • -2

The functions fi(z), f2(z), • • • , are found by the recurrence rela-
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1 Numbers in brackets refer to the bibliography at the end of J:he paper.

2 ~ denotes a formal expansion.
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tions

.. 0,       fp+i = -z—z-TT'     fp = :-r-j—>     "Vp = /p(0),
(2.2) z(l-7P/P) 1-zyp/p+i

p - 0, i,...,

and are formally expanded in power series

(2.3) fp(z) ~ cpo + cpiz + cp2z2 + ■ ■ ■ , p » 1, 2, ••• .

The infinite continued fraction expansion (1.2) can then be con-

structed provided none of the numbers \yo\, |ti|. • • • . *s equal to

unity. The case where |7„| =1 implies that |/„(z)| =L and in this

case the continued fraction expansion (1.2) is finite. Here it may be

shown by a method analogous to that in [2] that/0(z) is a rational

function of the form

(2.4) /.CO = ^^, | 61 = 1,       P*(z) = ?(*"*),

where P*(z) is any polynomial of degree n which does not vanish on the

unit circle or is everywhere equal to 1.

The numbers yp, which are rational functions of Coo, Coi, • • • , can

be computed from the recurrence formulas for the approximants

Ap(z)/Bp(z) of the continued fraction (1.2) and the determinant

formula

(2.5) ¿2p+2(z)P2P(z) - ¿2P(2)P2p+2(z) = (-l)"Tp+izp+in (1 - yrfi),
t-0

by equating coefficients of zp+1 in

(2.6) fo(z)B2p(z) - AiP(z) = - y^iz^fi (1 - y¿yi) + • • • ,

p - 0,1, ••• .
Thus one finds

— Coi
7o = Coo,      Ti

1 — CooCoo

(2.7)
2

Co2(l — CooCoo) + CooCoi

y2 —-, ....
(1 — CooCoo)2 — CoiCoi

None of these denominators is zero if none of the numbers |7P[ is

equal to 1. Conversely, the coP can be computed as rational functions

of the 7P:
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Coo = 7o,        Coi = - 7i(l - 7ofo),
(2.8) 2

Co2 = 72(1 — 7o7o)(l — 7i7i) — 7o7i(l — 7o7o), ■ • • .

From (2.6) and the determinant formula

p
A2p+z(z)B2p+i(z) - A2p+i(z)B2p+g(z) = (~l)pyp+iz^Jl (1 - 7<7.)

Í-0

or

fo(z)B2p+i(z) - A2p+i(z) = - z^f[ (1 - 7,T<) + • • • ,
i=0

p - 0, 1, • • • ,

it is seen that the developments in power series of the approximants

A2p(z)/B2p(z), £ = 0, 1, • • • , and A2p+i(z)/B2p+i(z), p = l, 2, • • • ,

coincide with the power series (2.1) up to and including the terms

involving zp and zp~l, respectively. Furthermore, two finite or infinite

continued fractions

(1 — 7o7o)z        1        (1 - 7i7i)z        1
7o + -

7o  +

7oz — 71 + 7iZ — 72 +

(1- 7o'7o')z     _1_      (1-717/)«      J_

7o'z — 7i +        7i'z - 72' +

have the same corresponding power series (2.1) if and only if 7p=7P',

p = 0, 1, • • • . Consequently, there is a unique correspondence be-

tween the continued fraction (1.2) and the power series (2.1), as

stated in the following theorem.

Theorem 2.1. If numbers yp with moduli different from one are

found from the coefficients of a power series (2.1), then there exists a

uniquely determined infinite continued fraction of the form (1.2) which

corresponds to the power series (2.1). Conversely, to every infinite con-

tinued fraction (1.2) in which \yp\ ?¿l, p=0, 1, • • • , there cor-

responds a unique power series (2.1). The power series expansions for

A2p(z)/B2p(z), p = 0, 1, • • • , and A2p+i(z)/B2p+i(z), p = l, 2, • • • ,

the 2pth and (2p+l)th approximants of (1.2), agree with the power

series (2.1) up to and including the terms involving zp and zp~l, respec-

tively. The continued fraction (1.2) is finite when \yn\ =1, and in this

case it represents the rational function (2.4).

If, in the recurrent process for finding the numbers 7P, one finds

that I ymI =1, then ym can be computed for the function fm/km, and
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frn/km formally expanded in a power series

J m CmO CmlZ Cm2Z i ,

(2.9)-—■+-— + -—+■■■ ,\km\^l,km^0.
Km Km Km Km

One continues the process for the computation of the numbers 7P, as

outlined above, until another value of y, namely yq, with modulus 1

is reached. Then, as in (2.9), the formal power series for fq/kq,

\kq\ 5^1, is formed, yq ior fq/kq computed, and the usual process for

the computation of the numbers 7P continued. In this way, one

constructs the infinite continued fraction expansion (1.1) where

Coo
7o = — >

ko

[ — Coi-]   / |~ CooCoo 1

^y L1_~"¡r}k2 i«o    _l

For this expansion, one obtains the following theorem by a method

analogous to that for Theorem 2.1.

Theorem 2.2. Corresponding to every power series (2.1) there exist

infinite continued fractions of the form (1.1), and, conversely, to every

infinite continued fraction (1.1) there corresponds a power series (2.1).

The power series expansions for A2p(z)/B2p(z), p=0, 1, • • • , and

A2p+i(z)/B2p+i(z), p = i, 2, • • • , the 2pth and (2p + l)th approximants

of (1.1), agree with the power series (2.1) up to and including the terms

involving zp and zp_1, respectively.

3. Algorithm for the expansion of a power series into the con-

tinued fraction (1.1). Since the actual computation of the numbers

7P in the continued fractions (1.1) and (1.2) is somewhat lengthy, it

is desirable that one have a simple algorithm for obtaining these

numbers. The following theorem may be used to find easily the con-

tinued fraction (1.1) corresponding to an arbitrary power series

(2.1), and, conversely, to expand a continued fraction of the form

(1.1) into its corresponding power series.

Theorem 3.1. Let fo(z) (2.1) denote an arbitrary power series. De-

termine polynomials B2p(z) =ß02v)+ßip)z+ß2p)z2+ ■ • ■ and numbers

yp(kp), p = 0, 1, • • • , such that \yp\ 9e 1 by a proper choice of numbers

kp, by means of the recurrence formulas

Bo(z) = 1,    Bi(z) = 7o3,    P2P(z) = ¿PYp#2p-i(z) - P2p-2(z),

B2p+i(z) = 7PzP2p(z) + kp(\ - ypyp)zBip-i(z), p = 1, 2, • • • ;
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70 = Co/k0,

(3.2)      (cp+i, Cp, Cp-i, • • • )

Po

,(2j>)

Aíp)
=  - *p+i7p+iil *<(! - 7¿7¿).

P = 0,l,

Then (1.1) is a continued fraction corresponding to fo(z). The poly-

nomials Bp(z) are the denominators of the approximants of (1.1). The

numerators of the approximants are A p(z) =5¡¡f)-r-SÍp)z+ • • • , where

,.Wp)    Aip)    .(2j>)
(00      ,0l      ,02      , )

(ñí2p)   f?<2p)   Rilp)
(PO      , Pi      , P2      ,

(3.3)

and

Co, Ci, C2, • • • , cp, 0, •

0, Co, Ci, • • • , Cp_i, 0, •

0, 0, Co, ••• , Cp_2, 0, •

(2jH-l)      (2p+l)      (2j>+1>

(OO ,0l ,02 ,

ra(2p+1)   J2p+11   0<*>H>
(Po , Pi , P2 ,

Co, Ci, C2,

0, Co, Ci,

0, 0, Co,

, Cp+i, 0,

, cp, u,

, Cp_i, 0,

+ (o, o, • • •, on Hi - yât), o, o, ••• V p - o, l, • • •

(where there are p+l zeros preceding the product).  The expansion

(1.1) is finite whenfo(z) is of the form (2.4), and kp = l, p = 0, 1, • • • .

One proves this theorem by showing by induction that the con-

tinued fraction (1.1) determined by (3.2) satisfies the relation

p
„ „  fo(z)B2p(z) - A2p(z) m - kp+iyp+iz^H *4(1 - ym) + • • ■ ,
(3.4) ,_o

p - 0, 1,   ...
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Formulas (3.3) for the coefficients 8(p) of -<4p(z) are found if one

equates corresponding powers of z in (3.4) and in

fo(z)B2p+i(z) - A2p+i(z) = - z^n Hi - 7,-Y.) + • • • ,
•-0

P - 0,1, •. • .

The Ap(z) are also given by the recurrence formulas

A0(z) = ¿oTo,       Ai(z) = hz,

^2P(Z)  =  ¿p7j42p-l(z) — 42p_s(z),

Aip+i(z) = 7„z^2p(z) + kp(l - 7p7p)z^2P-i(z), P - 1, 2, • • • .

Conversely, the relations (3.2) serve to determine fo(z) (2.1) when

(1.1) is given.

As an illustration of the algorithm, let

(3.5) fo(z) = 1 + 2 + z2 + z8 +
(-¿->

Let ¿o = 2. Then 7o = 1/2, P0(z)=l, and

(l)-(l) = - Äo*i(l - 7o7o)7i = - 2-3*i7i/4.

Let ki = 2,7i = -1/3, B2(z) = -z/3 -1, and

(1, !)(_")= -4-3-8W4-9.

For k2 = 2, 72 = l/4. By a continuation of this process with all kp = 2,

then 7P=( —l)p/(^ + 2), p = 0, 1, • • • , and the continued fraction

corresponding to (3.5) is, after some transformations,

(22 - l)z     S?«      (3* - l)z     Si«
Si« -1-      -     -

z        +   1   +        z        +1
(3.6)

(4* - l)z     SÍ«

+ ~~~z    + T +   . '

4. Convergence to the corresponding power series. The condi-

tions under which the continued fractions (1.1) and (1.2), correspond-

ing to the power series (2.1), converge to the value of the power

series will now be considered.

Theorem 4.1. If the infinite continued fraction (1.1) or (1.2) con-
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verges uniformly in a closed region T which contains the origin in its

interior, the corresponding power series converges to the same function

in and on the boundary of every circle K which lies wholly within T and

which has its center at the origin.

The proof is omitted since it is analogous to that given by Perron

[5, p. 342] for Stieltjes-type continued fractions.

The results of Weierstrass [10; ll], and Mittag-Leffler [3; 4],

concerning general infinite product and infinite series developments

for meromorphic functions, would lead one to conjecture that it

might be possible to find general continued fraction expansions for

such functions. To this end, let (2.1) be a power series expansion of

a meromorphic function Fo(z). The points r\, r2, ■ • • , rm are taken as

the poles of Fa(z) which are in the finite plane, where 1 i£ |fi| ^ |r2[

^ • • • ^ |rm|. It is assumed that the poles on \z\ =1 are at most

simple poles, since F0(z) can always be made to satisfy this condi-

tion by a linear transformation. Then the coefficients c0p (2.1) of

the power series expansion of Fo(z) are bounded. Consequently,

given such a function Fo(z), one may expand it into the continued

fraction (1.2) provided the numbers 7P (2.2) have moduli different

from one, and (1.2) converges to Fo(z) according to the following

theorem.

Theorem 4.2. A meromorphic function F0(z) can be uniquely ex-

panded into and represented in the closed domain

(4.1) C0:     |z|gr<l

by the continued fraction (1.2) if the numbers yp (2.2) have moduli dif-

ferent from one and if the coefficients of the power series expansions for

the 2Kth approximants (2K>N) of (1.2) are bounded.

Proof. By equating coefficients of zp in the recurrence formulas

(2.2), one obtains

p-i
Cop = (1 — 7o7o)ci,p_i — 7oX/ Co,xCi,j>-i-a

= yp IT (1 - 7x7x) + K,
X-0

where K depends only on 70, 7o, • • • , 7P-i, 7j>-i- If one puts 7\ equal

to a number of absolute value 1, then c0p no longer depends on

7x+i, fx+i, • ■ • , 7„. In this case c0p is the coefficient of zp in the de-

velopment of
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To +
(1 — 7o7o)z

(4.3)

+
(1

7oZ

- 7x-i7x-i)z

1       (1 — 7i7i)z

Ti + 7iz

1

72 +

1

7x-iz Yx
= 4o + dxiz + dX2z2 + = *x.

But the first (X+l) terms of this expansion are the same as the first

(X + l) terms of the power series expansion (2.1) for Fo(z). Conse-

quently,

Fo(z) - <l>x I = £ (cov — d\v)z" 2^ (cov - dxv)zv
I r=X+l

rX+1
(4.4)

=  ¿ ( | Co, | + | ¿x, | )f = (C + D)
d=x+i \ — r

where

max | Co« | = C, max | d\v \ = D, X > N, an arbitrarily large number,

for z in Co (4.1). Since the right-hand expression of (4.4) converges

to zero with increasing X, the functions <fr\ converge uniformly to

Fo(z) in Co.

The following theorem may be proved in an analogous manner.

Theorem 4.3. A meromorphic function F0(z) can be represented in

Co (4.1) by a continued fraction (1.1) provided the coefficients of the

power series expansions for the 2Xth approximants (2\>N) of (1.1)

are bounded.

Since Fo(z) is analytic in Co (4.1), Theorems 4.2 and 4.3 extend the

work of Schur beyond analytic functions which have moduli less

than one in the unit circle.

It is also noted that if the function F0(z) satisfies the condition

|Po(z)|<ilf throughout the region Co, then F0(z)/M<l. Hence

F0(z)/M is an analytic function of modulus less than one throughout

this region and satisfies the conditions of Schur's continued fraction

for analytic functions bounded in the unit circle. The continued frac-

tion which represents Fo(z) in Co is therefore

M(i — Yo7o)z       1       (1 - Yi7i)z       1

7oZ — 7i +        7iz — 72 + • •

P = 0,1,

Af7o + <1,

If one puts7P = 7, p = 0, 1, • • • , in (1.2), the following theorem on

a periodic continued fraction is obtained for convergence to the value
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of the power series and its analytic continuation.

Theorem 4.4.3 The periodic continued fraction

(1 — 77)2       1       (1 — 77)3       1
(4.5) 7 +

yz -    7    + 70 -    7   +

converges uniformly* to the value of the power series and furnishes the

analytic continuation in the cut z-plane. In the cut plane, the function

1 + z - (1 + z2 + (2 - 477)2) l/S

272

is regular and is equal to the continued fraction. For \y\ <1, the cut is

along the arc of the unit circle which contains the point 2 = 1 between the

points 277 — 1 +2i(77(l— 7f))1/2- For j-y[ >-1, the cut is along the

real axis between the points 277 —1 + 2(77(77 —1))1/2.

Proof. By a theorem of Perron [5, p. 276], the continued

fraction (4.5) converges for all z with the exception of those values

which satisfy the condition Ifzxi —1| = |fzx2 —1|, xi^x2, where

xi and x2 are the roots of the equation -yzx2—(1 +z)x+y =0.

Thus (4.5) diverges when |z-l + (l+z2 + (2-47f)z)1/2| = [2-I

-(l+z2 + (2-477)z)1'2|, where l+z2 + (2-477)25*0. Then

(z - 1 + (1 + z2 + (2 - 477)Z)1'2)cio

= (2 - 1 - (1 + 22 + (2 - 477)2)1'2)e-ia, a f¿ 0, real,

or

(2 - l)i sin a + (1 + 22 + (2 - 477)Z)1'2 cos a = 0,

whence

z + — = 2 [77 - (1 - 77)/], - 1 = / < 1.
z

The theorem follows immediately.

5. Convergence of the continued fractions (1.1) and (1.2). Since

the development of the continued fractions from an arbitrary power

series described in §2 and §3 is a purely formal process, the question

of the convergence of these continued fractions will be further dis-

cussed.

' This theorem and proof are due to Professor Oskar Perron, who communicated

them to the author.

4 Here the approximants A¡p+i/Bíp+i are considered with the common factor z

removed.
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The following theorems give convergence regions for large values of

\z\ and for regions which do not include the origin. They are im-

mediate consequences of the Pringsheim convergence criteria (cf.

Perron [5, pp. 254-262; 7]).

Theorem 5.1. The continued fraction (1.1)  converges uniformly

over every bounded closed region for which the conditions

| C2p-l7p-iz|   =  |  ¿P-l(l  — 7p-l7p-l)C2P-2C2p-lZ |  +  1,

I c2p£P7P | è | c2p_ic2p | + 1, Co = 1, p = 1, 2, • • • ,

hold simultaneously. The numbers cp are arbitrary constants different

from zero, or functions bounded in the region.

The following convergence regions for the continued fraction (1.1)

are obtained by various choices of the numbers cp in the above

theorem. The choice cP = l gives Theorem 5.2. If one writes c0

= (fi — Y)/Cri, cp = rp/bp, p = \, 2, • ■ ■ , where the bP are the partial

denominators of (1.1), Theorem 5.3 is obtained (cf. [5, p. 262]).

The choice rv = 2, p = i, 2, • • • , yields Theorem 5.4.

Theorem 5.2. If |7P|^2/|¿P|, ¡7P_i| > [ fep_i(l — Tp-iTp-i) ]. the

continued fraction (1.1) converges uniformly over every bounded closed

region for which

1
I z | = -,-¡—-j-r i p = I, 2, ■ • ■ .

| Yp-i | - I ¿P-i(l - 7P-i7p-i) I

Theorem 5.3. The continued fraction (1.1) converges uniformly over

every bounded closed region for which simultaneously

h(i - 7o7o) I = C | 7o |,

I 1

■l      YP7P

KP7P-i7pZ

<

Yp7p

Tip —  1

r2P-ir2P

rip+i — 1

r2pr2p+i

■ i P = 1, 2,

where C is an arbitrary constant and the rp are any numbers such that

rp>l.

Theorem 5.4.   The continued fraction  (1.1)  converges uniformly

over   every   bounded   closed   region   such   that   simultaneously   \z\

St 2(51/2)/| &i7o|  and \z\ ^5/\kj\, where k¡ denotes the number kp of

smallest modulus, and 2/51/2^|7P| ^2/31'2, |7P| ^1, p = \, 2, • • • .

By an equivalence transformation the continued fraction (1.1) may

be written in the form
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l/*ifo7iZ 1/1 7l |2 - 1
¿o7o + ¿o7o I'(w-')[t 1 + 1

(5.1) ,      ,
l/^27i72Z        1/1 7212 - 1 "I"i~" + ~  ~T~   "-...}

provided |7p| 5*0, l,p = 0, 1, • • • . The following convergence region

for this expansion is obtained by the parabola theorem [7].

Theorem 5.5. For values of yP such that 0<¡7p| ^2/31/2, |-y,,| 5*1,

the continued fraction (5.1) converges uniformly for all z = re(m in every

bounded closed region such that r^2/\kpypyp-i\[l+R[kpypyp-i

(cos 9 — t sin 0)]/|&p7p7p_i| ], provided ^\dp\ diverges, where di = \,

Cp=l/dpdp+i, c2p-i= -l/£p7p7p_iz, c2p=l/|7P| 2-l, p = l, 2, ■ • ■ .

The conditions of the preceding theorem are, for example, satisfied

for kp = l, 7p=10/9, p = 0, 1, • • • , in the periodic continued frac-

tion. In this case, (5.1) converges uniformly over every bounded

closed region exterior to the cardioid r=1.62 (1+cos 6). By an ap-

plication of the theorem of Worpitzky [12] to the expansion (5.1),

one obtains the same convergence region as stated in Theorem 5.4.

Furthermore, the theorem of Worpitzky states that the moduli

of the values of (5.1) and of its approximants do not exceed |¿o7o|

+ |2¿o/fo-¿o7o|.

6. The even and odd parts of the expansion (1.1). The even part

(cf. [S, p. 201]) of (1.1) is

¿i7i(l - 7o7o)z       ¿272(1 - 7i7i)z
«0»I To —

L — 7o¿i7iZ + 1  +    — ¿272Z + 71
(6.1)

¿373(1 — 7272)7iZ

+      — k3y3z + 72     +

or

¿i7i(l — 7o7o) ¿272(1 — 7i7i)

...]

ko/w   yow —
7o¿i7i/w + «H-k2y2/w + 7iw

(6.2)
¿373(1 — 7272)71

H-¿373/w + yiW + ]■

where w = l/z1/2.

Expansion (6.1) is of the same form first considered by Euler [l],

who derived it from a given power series, but the convergence of this
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expansion does not seem to have been studied. The convergence

theorems of §4 and §5 are applicable to (6.1) since the approximants

of (6.1) are the even approximants of (1.1). In addition, conditions

which insure the convergence of (6.1) in the neighborhood of the

origin will now be found.

Theorem 6.1. If Q<mú\kp\ =1, 0<w^|yp| <1, p = 0, 1, • • • ,
the continued fraction (6.1) converges uniformly over every bounded

closed region within

(6.3) z   <-
1   ' ~ (1 + (1 + m)1'2)2

It also converges for all z in the region

,        1
(6.4) z =     -■-,

1 '  ((1 + m3)1'2 - l)2

and uniformly in every bounded closed region interior to this region.

Proof. By the hypotheses on the kp and 7P, for \w\ =r,

\knrt(l-yiyi)\ al, |7p-4(1-7p-i7p-i)¿p7p| =1. £ = 3, 4, ••• ,
I -kpyp/w+yp-iw\ ^-\kpyp/w\ + |7P_iw| =-l/r+mr'=2, p = 2,
3, • • • , provided r = \(\ + (\+m,yi2)/m or \z\ ^m2/(l+myi2)2.

Also, for the first partial denominator of (6.1), | —y0kiyi/w+w\

= r-l/r = 2 provided r^l+21'2 or \z\ ^i/(l+21'2)2. The region

(6.3) is contained in this region. Consequently by the Pringsheim

convergence criteria, (6.1) converges uniformly over every bounded

closed region within (6.3).

Similarly, one obtains the convergence region (6.4), since | —kPyp/w

+7p_iw| =-|7P-iw| +|¿P7P/w| =-r+m2/r^2,p=2,3, ■ ■ • .pro-

vided rg-l-Kl+w2)1'2 or |z| èl/((l+»i2)1/2-l)2. For the

first partial denominator of (6.1), | —yokiyi/w+w\ = — r + m%/r

= 2, provided \z\ ^í/((í+m3y'2-l)2. Here l/((l+m3y'2-l)2

^l/((l+m2yi2-l)2.

Since in the expansion of a power series (2.1) into a continued

fraction (1.1), it is always possible to choose the numbers kp such

that l<\yp\ =N, p=0, 1, •••, where N is an arbitrary positive

constant, the following theorem insures the uniform convergence of

the even part of such a continued fraction in the interior of a circular

region about the origin.

Theorem 6.2. If 0<|kpyp| = M, \l-ypyp\=K, í<\yP\úN,
p = 0, 1, • • • , where M, K, and N are arbitrary positive constants such

that K'=(N—l)/4, (6.1) converges uniformly over every bounded closed
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region within

, 1
(6.5) 2   á-■ •

11      2MN(l + 2K)

PROOF.For|w| =r,|¿p+i7p+1(l-7p7p)7p-i! ^MKN^(r2-2MN)/4:

= [ | kp+iyp+ikpyp/w21 + | 7p7p_iw2| - | ¿p+i7p+i7P_i | - | ¿p7j>2[ ]/4

á|(-¿p+i7p+i/w + 7pW)(-¿p7p/w+7p_i«;)|/4, p = 2, 3, ■■■.
Hence by the Pringsheim convergence criteria, (6.1) con-

verges uniformly over the region \w\ 2 = r2^2MN+iMKN, or

|z| úl/2MN(l+2K), provided K^(N-l)/4. The latter condition

is necessitated by a slight irregularity at the beginning of the con-

tinued fraction. Here, for the Pringsheim criteria to hold,

|¿272(1-7i7i) I ^MK^(r2-M-MN2)/A^ [ 17o¿i7i¿272/w21 + |7iW2|

- I ¿272I — I ¿i7o7i| ]/4á [ (-7o¿i7i/«'+w) (-¿272/W+71W) 1 /4, so
that r2^\MK+M(l+N2), or |z| ^l/[A-MK+M(l+N2)]. The

circular region (6.5) is contained in or coincides with this region if

K^(N-l)/i.
As an illustration of this theorem, consider the expansion of the

function (3.5) with 7p = 2, p=0, 1, • • • . By the algorithm (§3),

¿o = l/2, ¿p = (-l)"+1/3p, p = l, 2, • • • . Then, for M = l, K = 3,
N = 2, the continued fraction (6.1) converges for |z| g 1/28.

If 0<|7p| ÚN, l^|¿p7p| ÚM, the following theorem gives con-

vergence for large values of |z|.

Theorem 6.3. // lú\kpyp\úM, | l-7pfp| =X, 0<\yP\^N,
p=0, 1, ••• , where M, K, and N are arbitrary positive constants such

that iV= I/70, (6.1) converges for all z in the region

(6.6) |z| ^ 2^(1 + 2*0

and uniformly in every bounded closed region interior to this region.

Proof. For] w\ =r, | ¿p+r7p+i(l-7p7p)7p_i| ^MKN^(l/r2-2MN)ß

=■ [ I ¿p+i7p+i¿p7p/w2 I + i ypyp-iW2 I - I ¿p+i7p+i7p_i| - | ¿P7p| ]/4
= I ( — ¿p+i7p+i/w+ ypw) ( — ¿p7p/w + 7p-iw) | /4. Hence (6.1) con-

verges for r2£l/2MN(l+2K) or \z\^2MN(l+2K). By a

method analogous to that used in Theorem 6.2, for the Pringsheim

criteria to hold for the irregularity at the beginning of (6.1), it can

be shown that \z\ = [4MK+M(l+Ny0)]/yo- This region lies in-

terior to or coincides with (6.6) provided N^l/y0.

The even part of (1.1) is similar in form to the expansion

(6.7) l + ¿0z +
1 + ¿iz + 1 + d2z +
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discussed by Thron [8]. For

&o7o = 1,     do = an arbitrary finite number,

- ¿o¿i7i(l - 7o7o) = 1,     di= - 7o*i7i,
(6.8)

knyn(\ — 7n-rY»-i)               ,        - knyn
- = 1,     dn =->       « = 2, 3,

7n-l 7n-l

the expansions (6.1) and (6.7) are identical in form. For an arbi-

trary power series l + (l-r-¿o)z-r-c2z2+c3z3+ • • • the kp and 7P,

p = 0, 1, • • • , may be found by (3.2) and (6.8) such that the even

part of the resulting continued fraction (1.1) will be of exactly the

same form as (6.7). However, since the law of formation of the coeffi-

cients dp for the expansion (6.7) (cf. [8]) is different from that used

in the algorithm of §3 and in the formulas (6.8), the coefficients dp

in the continued fractions (6.7) corresponding to the same power

series, but found by the two different methods, are in general dif-

ferent.

The odd part (cf. [5, p. 201]) of (1.1) is

¿ofoz       h(l - 7o7o)7i       ¿i(l — 7i7i)fo72Z

,¿ «n ^oz   +   - 7i + ¿i7oZ +      — 72 + k2yxz
(6.9)

¿2(1 - 7272)7i73Z

+ -  73 +   ¿372Z +   •   •   *

By methods similar to those for the even part (6.1) of (1.1), one may

find convergence regions for the odd part (6.9). Such regions depend

on the conditions which the numbers kp and 7P satisfy, as, for in-

stance, in the following theorem.

Theorem 6.4. // 0<|¿p[ =M, |1-7p7p|^#, \<\yP\ûN,
p = 0, 1, • • • , where M, K, and N are positive constants, such that

l = 16KM2Ni>i-(l-N/(l+2K))2, (6.9) converges uniformly over

every bounded closed region in the annulus

8KMN ,   . 1
Ú   z   =

1 - (1 - IójOíW4)1'2 ~ 2ilfiV2(l + 2K)

7. Transformations of the continued fraction (1.1). For the mero-

morphic function

So + zFo(z)
(7.1) F(z)=---li,

5o - zPo(z)

where F(z) has no poles in \z\ < 1, 50 is a constant different from zero,
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and Fo(z) is a meromorphic function, with the use of the functions

h - fk
*»(») = t    ,    , ' ¿ = 0, 1, ••• ,/>,

8k + zfk

as in  [2], the following continued fraction is obtained (where the

right-half plane has been mapped on the unit circle).

Theorem 7.1. The infinite continued fraction

1 + z      22(5„' - 70')       (5i + 7o ) (5/ - 7i )z

(7.2)

where

1-2+    S¿ ~.8iz    + S/

(82 + y{)(82' -yj)z

+ hi - 83z +

(7-3)     8p+i =  Sp      /_", ,     s;=j-,    li **T'      t"0'1''"'
X Op   Jp Kp ftp

and where the kp are chosen so that \yp\ 5*1, 8P' 5*7P', converges uni-

formly over every bounded closed domain in Co (4.1) to the meromorphic

function F(z) (7.1), provided the coefficients of the power series expan-

sion for the 2Kth approximants of (7.2) remain bounded, for X suffi-

ciently large. The expansion (7.2) is finite when the yp form a finite

sequence.

By the transformation

4rZ (1 + w)1'2 - 1
w = —'——•) z = r-)

(r - z)2 (1 + w)1/2 + 1

which maps the interior of | z| =r on the w-plane exterior to the cut

from —1 to — oo, where r is defined by (4.1), one obtains the con-

vergence to the function F of the continued fraction

(l-r) + (l+r)(l + wy2 2(8¿-y¿)rw

(l+r) + (l-r)(l + wyi2+ (8¿ +8ir) + (S¿ -8ir)(l + wyi2

(8i+y¿)(8{-y{)rw

+ (8{+S2r) + (8{-ô2r)(l+wy'2+

provided the coefficients of the power series expansions for the 2Xth

approximants of this continued fraction remain bounded for X suffi-

ciently large. The continued fraction converges uniformly over every
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bounded closed region which lies in the w-plane exterior to the cut

along the real axis from — 1 to — ».

In (7.4), let ô0 = l, |öp| =1, Jfep_i = l, p = \, 2, • • • . One thus ob-
tains an extension of the theorem in [9]: If c is a nonzero constant,

— » <gP< », gp^L ap_i = l+wp_i, &p_i = l— isp-i, — » <sp_i< »,

p = \, 2, • • • , the continued fraction

c[(l - r) + (1 + r)(l + wyi2]

(«o + hr) + (flo - V)(l + w)1'2

AgiTW

+ (ai + hr) + (öi - V)(l + w)1'1

_4(1 - gi)girw_

+ («2 + hr) + (a2 - hr)(l + w)1'2

_4(1 - g2)gsrw_

+ («3 + hr) + (az - b&)(l + to)1'2 + • • •

converges uniformly over every bounded closed domain in the w-plane

exterior to the cut along the real axis from — 1 to — » to the meromorphic

function F(z), provided the coefficients of the series expansions of the 2\th

approximants of the continued fraction are bounded for X sufficiently

large.
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ARBITRARY MAPPINGS

H. O. BLOCK AND BUCHANAN CARGAL

The results of this paper generalize some results of H. Blumberg.1

Let X be a set of elements and let 9Î he a collection of nonempty

subsets of X. We assume that there is, in 91, a countable subcollec-

tion: N\ N2, ■ • ■ , Nn, ■ ■ • with the property that, for each N of 9c

and each x of N, there is an integer k, such that xENk and NkQN.

In the remainder of this paper the letter N with a superscript will

always denote a member of the set N1, N2, • • • , Nn, • • • . The letter

N with or without subscripts will always denote a member of 9Î,

and the letter x will denote an element of X. The symbol N(x) de-

notes a set N which contains x.

Let the statements of the preceding paragraph be repeated, re-

placing X by 7,91 by 9Jc, N by M, x by y.
Let a correspondence, /, be given which to each x assigns a non-

empty subset (denoted by f(x)) of Y. If VQY, then/_1(F) denotes

the set of all x such that/(x) • F5*0.

Definitions. Let S be a subset of X. Then S is nowhere dense if,

for each N, there is an NiÇLN with Ni-S = 0. A set is exhaustible if

it is the union of a countable collection of nowhere dense sets. A set

is residual if it is the complement (with respect to X) of an ex-

haustible set. A set is inexhaustible if it is not exhaustible. The point

x is said to be a point of exhaustible f-approach if there is a y in f(x),

an M(y), and an N(x) such that [f~1(M(y))]-N(x) is exhaustible.
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1 New properties of all real functions, Trans. Amer. Math. Soc. vol. 24 (1922) pp.

113-128. Also Arbitrary point transformations. Duke Math. J. vol. 11 (1944) pp. 671-

685. The definition of /-approach and X approach that we use here are essentially

those introduced by Blumberg.


