ON THE SPACE OF INTEGRAL FUNCTIONS. III

V. GANAPATHY IYER

- 1. Introduction. This paper consists of two parts. The properties of the space Γ of integral functions were studied in [1;2]. In part 1 of this paper, I prove three theorems on the closed linear subspace of Γ spanned by specified classes of integral functions. In part 2, I study continuous linear transformations of Γ into Γ .
- 2. Firstly we recall some of the main definitions and results proved in [1; 2]. The symbol Γ denotes the class of all integral functions topologised by the metric $|\alpha \beta|$ where $\alpha = \alpha(z) = \sum_{n=0}^{\infty} a_n z^n$, $\beta = \beta(z) = \sum_{n=0}^{\infty} b_n z^n$, and

(1)
$$|\alpha - \beta| = \max[|a_0 - b_0|, |a_n - b_n|^{1/n}, n \ge 1].$$

The space Γ is a non-normable, complete, separable, linear metric space. The adjoint space Γ^* of continuous linear functionals defined on Γ is algebraically isomorphic to the class of all power series with positive radius of convergence so that each $f \in \Gamma^*$ is determined by a sequence

(2)
$$(c_n)$$
 with $\{ |c_n|^{1/n} \}$ bounded

and $f(\alpha) = \sum_{n=0}^{\infty} c_n a_n$, $\alpha = \sum_{n=0}^{\infty} a_n z^n$. Sometimes it is convenient to write $f = f(z) = \sum_{n=0}^{\infty} c_n z^n$.

2.1. For each R>0, we denote by $\Gamma(R)$ the class of all integral functions topologised by the norm $|\alpha; R|$ defined by

(3)
$$|\alpha; R| = \sum_{n=0}^{\infty} |a_n| R^n, \qquad \alpha = \sum_{n=0}^{\infty} a_n z^n.$$

Each element $f \in \Gamma^*(R)$ is determined by a sequence (c_n) with $(|c_n|/R^n)$ bounded [2, p. 88]. If $E \subset \Gamma$, then the closure of E in Γ is the intersection of the closures of E in $\Gamma(R)$ for R > 0 and

(4)
$$\Gamma^* = \sum_{R>0} \Gamma^*(R)$$

[2, pp. 87-88]. We quote in the form of a lemma the main result used in proving the theorems mentioned above and those below.

LEMMA. If $|\alpha| \ge d > 0$, then $|\alpha; R| \ge d$ for R > A(1/d) where A(1/d) is the greater of the two numbers 1 and 1/d.

Received by the editors March 7, 1952.

¹ The numbers in brackets refer to the bibliography at the end.

2.2. We have proved in [2, p. 89, Theorems 3 and 4] that if S is a linear subspace of Γ , then (1) every continuous linear functional defined on S can be extended to the whole of Γ so as to be continuous and linear and (2) if $\alpha \in \Gamma$ is at a positive distance from S, there is one $f \in \Gamma^*$ with $f(\alpha) = 1$ and $f(\beta) = 0$ for all $\beta \in S$. The result (2) stated above leads immediately to the following theorem which will be used to derive the results in part 1. In this theorem for a set $E \subset \Gamma$ the symbol $L\{E\}$ stands for the closed linear subspace of Γ generated by the elements of E.

THEOREM 1. Let $E \subset \Gamma$. An element $\alpha \in \Gamma$ will belong to $L\{E\}$ if and only if $f(\alpha) = 0$ for every $f \in \Gamma^*$ such that $f(\beta) = 0$ for all $\beta \in E$.

- 3. THEOREM 2. Let $\alpha = \alpha(z) = \sum_{n=0}^{\infty} a_n z^n$ be an element of Γ such that no coefficient a_n is zero. Let z_n , $n=1, 2, \cdots$, be a sequence of distinct complex numbers. Let $\alpha_n = \alpha(zz_n)$. Let one of the following conditions be satisfied:
 - (i) The sequence (z_n) has a finite limit point;
- (ii) α is of order p and finite type and $\limsup_{n\to\infty} n/|z_n|^p = \infty$. Then $L\{\alpha_n, n \geq 1\} = \Gamma$.

PROOF. Let $f = \sum_{n=0}^{\infty} c_n z^n \in \Gamma^*$ and let $f(\alpha_n) = 0$, $n = 1, 2, \cdots$. Then we get

(5)
$$\sum_{p=0}^{\infty} c_p a_p z_n^p = 0, \qquad n = 1, 2, \cdots.$$

Now $g(z) = \sum_{p=0}^{\infty} c_p a_p z^p$ is always an integral function and if (ii) is true, it is an integral function of order p and finite type. Since $g(z_n) = 0$, we see from classical theorems on integral functions [3] that $g(z) \equiv 0$ so that $c_p a_p = 0$ and since no $a_p = 0$, we get $c_p = 0$ for $p=0, 1, 2, \cdots$. Hence f is the identically zero functional. So by Theorem 1 every $\alpha \in \Gamma$ is in $L\{\alpha_n, n \ge 1\}$. This proves the theorem.

- 3.1. Remark. If some of the coefficients of $\alpha = \sum_{n=0}^{\infty} a_n z^n$ be zero, the same argument shows that under the hypothesis (i) or (ii) of Theorem $2L\{\alpha_n\}$ will be the same as the closed linear subspace of Γ spanned by those powers of z in α whose coefficients do not vanish.
- 3.2. Illustrations. Every integral function could be obtained as the uniform limit (in any finite circle [1, p. 18, Theorem 3]) of finite linear combinations selected from each of the following sequences:
- (1) $\alpha(z/n)$, n=1, 2, \cdots , where no coefficient is zero in α $= \sum_{0}^{\infty} a_{n}z^{n}.$ (2) $e^{zn^{1/2}}, n=1, 2, \cdots$

(3) $\cos 2\pi z n^{1/2} + \sin 2\pi z n^{1/2}$, $n = 1, 2, \cdots$

4. If
$$\alpha = \sum_{0}^{\infty} a_{n}z^{n}$$
, $\beta = \sum_{0}^{\infty} b_{n}z^{n}$, we define $\alpha \circ \beta$ by

$$\alpha \circ \beta = \sum_{n=0}^{\infty} a_n b_n z^n.$$

We denote by $(\alpha)_n$ the function $\alpha \circ \alpha \circ \alpha \circ \cdots \circ \alpha$, *n* times.

THEOREM 3. Let $\alpha = \sum_{0}^{\infty} a_n z^n \in \Gamma$ be such that Re (a_n) is a strictly decreasing sequence. Then $L\{(\alpha)_n, n \geq 1\}$ is equal to Γ .

PROOF. Let $f = \sum_{p=0}^{\infty} c_p z^p \in \Gamma^*$ be such that $f[(\alpha)_n] = 0$, $n = 1, 2, \cdots$. This gives the relations

(6)
$$\sum_{n=0}^{\infty} c_p a_p^n = 0, \qquad n = 1, 2, 3, \cdots.$$

Let

$$g(z) = \sum_{p=0}^{\infty} c_p a_p e^{a_p z}.$$

Since $\sum |c_p a_p|$ converges by (2) and $a_p \to 0$ as $p \to \infty$, we see that g(z) is an integral function. By (6), $g^{(n)}(0) = 0$, $n = 0, 1, 2, \cdots$. Hence $g(z) \equiv 0$. If $\lambda > 0$, we have

(8)
$$0 = \int_0^{\lambda} g(z)e^{-a_0z}dz = \lambda c_0a_0 + \sum_{p=1}^{\infty} c_pa_p \int_0^{\lambda} e^{-(a_0-a_p)z}dz.$$

In virtue of the hypothesis on Re (a_n) the expression

$$\sum_{p=1}^{\infty} c_p a_p \int_0^{\lambda} e^{-(a_0 - a_p)z} dz.$$

is bounded as $\lambda \to \infty$. So (8) gives $c_0 a_0 = 0$ and so $c_0 = 0$ (since no a_n is zero by hypothesis). Repeating the argument and using induction we see that $c_n = 0$ for $n = 0, 1, 2, \cdots$. Therefore $L\{(\alpha)_n, n \ge 1\} = \Gamma$ as in the previous theorem.

4.1. REMARK 1. It is not necessary to suppose that Re (a_n) strictly decreases. It is enough to suppose that Re $(a_0) \ge \text{Re } (a_1) \ge \text{Re } (a_2)$ $\ge \cdots$, the a_n 's are all distinct from one another, and that no a_n is zero. This will follow from the above proof if we observe that for t real and not zero

$$\left| \int_0^{\lambda} e^{itx} dx \right| \le \frac{2}{|t|}, \qquad \lambda > 0.$$

- 4.2. Remark 2. Instead of supposing that the real parts of a_n satisfy the conditions of Theorem 3 or those of §4.1, we can suppose that for some real θ , the sequence $a_n e^{i\theta}$ has the same property.
 - 4.3. ILLUSTRATIONS. Theorem 3 applies to the following functions:

(1)
$$e^{z} - \frac{1}{3}z = 1 + \frac{2}{3}z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots,$$

(2)
$$\cosh z^{1/2} = 1 + \frac{z}{2!} + \frac{z^2}{4!} + \cdots,$$

(3)
$$\alpha(z) = 2 + \frac{z}{1} + \frac{z^2}{2^2} + \cdots + \frac{z^n}{n^n} + \cdots,$$

but does not apply to e^z , the first two coefficients being equal. It can be directly verified that there exist $f \in \Gamma^*$ not identically zero such that $f[(e^z)_n] = 0$, $n = 1, 2, 3, \cdots$.

- 5. Theorem 4. Let Z denote a set of complex numbers. Let for $\alpha \in \Gamma$ the symbol (α, Z) denote the set of functions $\alpha(z+\lambda)$, $\lambda \in Z$. Let $\alpha^{(p)}$ denote as usual the pth derivative of α . The subspaces $L\{(\alpha, Z)\}$ and $L\{\alpha^{(p)}, p \geq 0\}$ are the same provided one of the following conditions be satisfied:
 - (i) The set Z has a finite limit point;
- (ii) α is of order ρ and finite type and Z contains a sequence z_n of distinct points such that $\limsup_{n\to\infty} n/|z_n|^{\rho} = \infty$.

Proof. Let $\alpha = \sum_{n=0}^{\infty} a_n z^n$. Then

$$\alpha^{(p)} = \sum_{n=0}^{\infty} (n+1)(n+2) \cdot \cdot \cdot (n+p) a_{p+n} z^{n}.$$

So if $f = \sum_{0}^{\infty} c_n z^n \in \Gamma^*$ be such that $f[\alpha^{(p)}] = 0$, $p = 0, 1, 2, \cdots$, we get

(9)
$$A_p = \sum_{n=0}^{\infty} (n+1)(n+2) \cdot \cdot \cdot \cdot (n+p)c_n a_{p+n} = 0, \ p=0,1,2,\cdots$$

If $f[\alpha(z+\lambda)] = 0$ for $\lambda \in \mathbb{Z}$, then

(10)
$$\sum_{p=0}^{\infty} c_p \frac{\alpha^p(\lambda)}{p!} = 0 \quad \text{for } \lambda \in Z.$$

Using the expression for $\alpha^{(p)}(\lambda)$ in (10), using the classical inequalities for the coefficients in a power series, and noting that the double series involved in the necessary rearrangement is absolutely convergent, we see that (10) is equivalent to

(11)
$$\sum_{p=0}^{\infty} A_p \frac{\lambda^p}{p!} = 0, \qquad \lambda \in \mathbb{Z}.$$

The series in (11) converges for all λ and so under (i) of the theorem (9) and (10) are equivalent so that the theorem follows from Theorem 1 in this case. To prove the same under (ii) of the theorem we have to show that $\sum A_p Z^p/p!$ is an integral function of order ρ and finite type. To do this it is enough to prove that $p^{1/\rho}|A_p/p!|^{1/p}$ is bounded [3, p. 41]. Now by (2) there is a K_1 such that $|c_n| \leq K_1^{n+1}$, $n=0, 1, 2, \cdots$. Since α is of order ρ and finite type, there is k_2 such that $n^{1/\rho}|a_n|^{1/n} \leq K_2$, $n=1, 2, \cdots$. If $p \geq 1$, we have

$$|A_{p}| \leq \sum_{n=0}^{\infty} (n+1) \cdot \cdot \cdot \cdot (n+p)(n+p)^{-(n+p)/\rho} K_{1}^{n+1} K_{2}^{n+p}$$

$$\leq K_{1} K_{2}^{p} p^{-p/\rho} \sum_{n=0}^{\infty} (K_{1} K_{2})^{n} (n+p)^{p-n/\rho}.$$

Let t be the integral part of ρp . If p is large and $0 \le n \le t$, it is easily seen that $(n+p)^{p-n/p} \le p^p$. Hence

$$|A_{p}| \leq K_{1}K_{2}^{p}p^{p-p/\rho} \sum_{n=0}^{t} (K_{1}K_{2})^{n} + K_{1}K_{2}^{p}(K_{1}K_{2})^{t}p^{-p/\rho} \sum_{n=1}^{\infty} (K_{1}K_{2})^{n}n^{-(n+t-p\rho)/\rho}.$$

Since $|t-p\rho| \le 1$, we see from the above that $p^{1/p} |A_p/p!|^{1/p}$ is bounded as $p \to \infty$ noting that $(a+b)^{1/p} \le a^{1/p} + b^{1/p}$, a, b > 0 and $[p^p(p!)^{-1}]^{1/p} = O(1)$ as $p \to \infty$. This completes the proof of the theorem.

5.1. ILLUSTRATIONS. Consider $\alpha = e^{z^2}$. Here $\alpha^{(n)} = e^{z^2}Q_n(z)$ where $Q_n(z)$ is a polynomial of *precise* degree n. Since z^n , $n = 0, 1, 2, \cdots$, can be expressed as a finite linear combination of $Q_0(z)$, $Q_1(z)$, \cdots , and every integral function could be put in the form $e^{z^2}\beta$ where β is an integral function, it follows that $L\{\alpha^{(n)}, n \ge 0\} = \Gamma$. Hence the set $L\{e^{(z+n^{-1})^2}, n \ge 1\}$ or the set $L\{e^{(z+n^{1/3})^2}, n \ge 1\}$ is the whole space Γ . Note that if $\alpha = e^z$, then $L\{\alpha^{(n)}, n \ge 0\}$ is merely the one-dimensional subspace of constant multiples of e^z .

PART 2

6. We now consider continuous linear transformations whose domain is the whole of Γ and whose range is in Γ . When the range is also the whole of Γ , we use the usual term "onto." The main result

in this connection is that every such continuous linear transformation can be specified in terms of a family of continuous linear transformations of normed spaces into normed spaces. We denote by $T(R_1 \rightarrow R_2)$ a continuous linear transformation whose domain is $\Gamma(R_1)$ and range is in $\Gamma(R_2)$. We denote the family of such transformations by $F(R_1 \rightarrow R_2)$. Consistent with this notation we denote by $T(\infty \rightarrow \infty)$ a continuous linear transformation of Γ into Γ and the family of such transformations by $F(\infty \rightarrow \infty)$.

7. THEOREM 5. The following relation is valid:

$$F(\infty \to \infty) = \prod_{R_2 > 0} \left\{ \sum_{R_1 > 0} F(R_1 \to R_2) \right\}.$$

In other words, each $T(\infty \to \infty)$ is a $T(R_1 \to R_2)$ for each $R_2 > 0$ and a corresponding suitably chosen $R_1 > 0$.

PROOF. The topology $\Gamma(R)$ becomes weaker as R increases (in the sense of [4, p. 62]) and Γ is the topology just weaker than all the $\Gamma(R)$, R>0 [2, p. 87]). By known properties of stronger and weaker topologies [5, p. 71] it follows that a $T(\infty \to \infty)$ is a $T(\infty \to R_2)$ for each $R_2>0$. Hence

(12)
$$F(\infty \to \infty) \subset \prod_{R_2>0} F(\infty \to R_2).$$

Now suppose that a linear transformation T of Γ into Γ is not continuous. Then there exists a sequence (α_p) of elements of Γ such that $|\alpha_p| \to 0$ as $p \to \infty$ but $|T(\alpha_p)| \ge d > 0$, $p = 1, 2, \cdots$. By the lemma of §2.1, we see that $|T(\alpha_p); R| \ge d$ for R > A(1/d), that is, T is not a $T(\infty \to R_2)$ for $R_2 > A(1/d)$. This along with (12) proves that

(13)
$$F(\infty \to \infty) = \prod_{R_2>0} F(\infty \to R_2).$$

Now let $R_2 > 0$ be fixed. Any $T(R_1 \rightarrow R_2)$, $R_1 > 0$, is a $T(\infty \rightarrow R_2)$. Hence

(14)
$$\sum_{R_1>0} F(R_1 \to R_2) \subset F(\infty \to R_2).$$

Suppose that a linear transformation T of $\Gamma(R_1)$ into $\Gamma(R_2)$ is not continuous for any $R_1>0$. Then by known properties of normed spaces [6, p. 54] we can, for each positive integer p, find an element α_p of $\Gamma(p)$ such that $|\alpha_p; p| \leq 1/p$ while $|T(\alpha_p); R_2| \geq 1$. From the definitions of $|\alpha; R|$ and $|\alpha|$, it is easily verified that $|\alpha_p| \leq 1/p$ and so $|\alpha_p| \to 0$ as $p \to \infty$, while $|T(\alpha_p); R_2| \geq 1$. This proves that such a T is not a $T(\infty \to R_2)$. This along with (14) proves that

(15)
$$\sum_{R_1>0} F(R_1 \to R_2) \subset F(\infty \to R_2).$$

The theorem follows from (13) and (15).

8. We write $\delta_n \equiv z^n$, $n = 0, 1, 2, \cdots$. Theorem 4 leads to the following result.

THEOREM 6. A necessary and sufficient condition that there exists a $T = T(\infty \to \infty)$ with $T(\delta_n) = \alpha_n$, $n = 0, 1, 2, \cdots$, is that, for each R > 0, the sequence $|\alpha_n; R|^{1/n}$ is bounded.

PROOF. $T \in F(\infty \to \infty)$ with $T(\delta_n) = \alpha_n$, $n = 0, 1, 2, \cdots$. Then by Theorem 4, for each R > 0, there is an $R_1 > 0$ such that $T \in F(R_1 \to R)$. Hence by known properties of transformations between normed spaces [6, p. 54, Theorem 1], there is a K = K(R) such that

$$|T(\delta_n); R| = |\alpha_n; R| \leq K |\delta_n; R_1| = KR_1^n$$

This proves that the condition is necessary. Conversely let the condition of the theorem be satisfied by the sequence (α_n) of elements of Γ . If $\alpha = \sum_{n=0}^{\infty} a_n \delta_n$, then $|a_n|^{1/n} \to 0$ as $n \to \infty$. Hence the series $\sum a_n \alpha_n$ converges in Γ to an element of Γ [1, p. 18, Theorem 3]. Now define $T(\alpha) = \sum_{0}^{\infty} a_n \alpha_n$ for $\alpha \in \Gamma$. Then $T(\delta_n) = \alpha_n$, $n = 0, 1, 2, \cdots$, and for each R > 0 we have $|T(\alpha); R| \leq K \cdot |\alpha; R_1|$, that is, $T \in F(R_1 \to R)$. So by Theorem 4, $T \in F(\infty \to \infty)$. This completes the proof of the theorem.

- 8.1. Remark. If $\alpha_n = T(\delta_n)$, $n = 0, 1, 2, \cdots$, satisfies the condition of Theorem 6, there is one and only one transformation of $F(\infty \to \infty)$ satisfying $T(\delta_n) = \alpha_n$. This does not preclude the existence of discontinuous linear transformations T' with $T'(\delta_n) = \alpha_n$. By using any Hamel basis containing (δ_n) we can always construct such discontinuous transformations.
- 9. Automorphisms of Γ and bases. We have defined a base of Γ as a sequence α_n , n=0, 1, 2, \cdots , of elements of Γ such that every $\alpha \in \Gamma$ can be uniquely represented as a convergent series

(16)
$$\alpha = \sum_{n=0}^{\infty} t_n(\alpha) \alpha_n$$

[2, p. 92]. If, in (16), $|t_n(\alpha)|^{1/n} \to 0$ as $n \to \infty$ for every $\alpha \in \Gamma$, then we shall call the base (α_n) a proper base (for instance the bases of [2,

² Here K and R_1 are the numbers for which $|\alpha_n; R| \leq KR_1^n$, $n=0, 1, 2, \cdots$. Such numbers exist by the hypothesis on (α_n) .

p. 93, Theorem 8] are all proper). The following theorem gives the relations between automorphisms of Γ and bases.

THEOREM 7. If T is an automorphism (that is, a bi-uniform, bicontinuous, linear transformation of Γ onto Γ), then every base is transformed into a base; in particular $T(\delta_n)$, $n=0,1,2,\cdots$, will be a base. Let T be a transformation of $F(\infty \to \infty)$ such that $T(\delta_n)$ form a base. Then T will be an automorphism if one of the following conditions be satisfied:

- (i) T is a transformation of Γ onto Γ .
- (ii) T is a closed transformation, that is, takes closed sets in Γ into closed sets in Γ .
 - (iii) The base $T(\delta_n)$ is a proper base.

PROOF. The first part of the theorem is an easy consequence of the definition of automorphisms and bases. To prove the second part, let $T(\Gamma)$ denote the range of T. If $T(\delta_n)$ is a base, we show that T transforms Γ onto $T(\Gamma)$ in a one-to-one manner. If $\alpha = \sum a_n \delta_n$, $\beta = \sum b_n \delta_n$, then, since T is continuous, we get $T(\alpha) = \sum a_n T(\delta_n)$ and $T(\beta) = \sum b_n T(\delta_n)$. If $T(\alpha) = T(\beta)$, we see from the definition of a base that $a_n = b_n$, $n = 0, 1, 2, \cdots$, and therefore $\alpha = \beta$. Now if we know $T(\Gamma) = \Gamma$, then by a known theorem [6, p. 41, Theorem 5] the inverse transformation (which exists as just now shown) is also continuous and obviously linear. So T will be an automorphism. So we have to show that under the conditions of the theorem $T(\Gamma) = \Gamma$. In case (i) this is true by hypothesis. In case (ii), since $T(\delta_n)$ is a base, we have for every $\alpha \in \Gamma$

$$\alpha = \sum t_n(\alpha)\alpha_n = \lim_{n\to\infty} T\left[\sum_{p=0}^n t_p(\alpha)\delta_p\right],$$

so that $T(\Gamma)$ is dense in Γ . Since T is closed, $T(\Gamma)$ must be closed in Γ and so $T(\Gamma) = \Gamma$. In case (iii), we have for $\alpha \in \Gamma$

$$\alpha = \lim_{n \to \infty} T \left[\sum_{p=0}^{n} t_p(\alpha) \delta_p \right].$$

Since the base is proper, $\sum_{p=0}^{n} t_p(\alpha) \delta_p$ converges to an element $\beta \in \Gamma$. Hence $T(\Gamma) = \Gamma$ in this case also. This completes the proof.

- 9.1. REMARK 1. The above theorem shows that the class of closed transformations T of $F(\infty \to \infty)$ for which $T(\delta_n)$ form a base coincide with the class of automorphisms.
- 9.2. Remark 2. I have not been able to prove or disprove the existence of improper bases. Nor is it known that every base (α_n)

satisfies the condition that $|\alpha_n; R|^{1/n}$ is bounded for each R>0. It is likely that every base is proper and satisfies the above condition in addition. If this be so, the previous theorem shows that there will be a one-to-one correspondence between bases in Γ and automorphisms of Γ .

10. Multiplicative transformations. A transformation $T \in F(\infty \to \infty)$ is said to be multiplicative if $T(\alpha\beta) = T(\alpha)T(\beta)$ for $\alpha, \beta \in \Gamma$. The following theorem gives a complete characterisation of such transformations.

THEOREM 8. Let $T \in F$ $(\infty \to \infty)$ and $T(\delta_1) = \alpha$. Then if T is not identically zero, it is multiplicative if and only if $T(\delta_n) = \alpha^n$, $n = 0, 1, 2, \cdots$. Moreover $T(\beta) = \beta[\alpha(z)], \beta = \beta(z) \in \Gamma$.

PROOF. Let T be not identically zero. Then the equation $T(\alpha) = T(\alpha)T(\delta_0)$ shows that $T(\delta_0) = 1$. From the equation $\delta_{m+n} = \delta_m \delta_n$ we see that $T(\delta_n) = [T(\delta_1)]^n$, $n = 0, 1, 2, \cdots$. So if the transformation is multiplicative, the condition of the theorem is satisfied. Conversely let a $T \in F$ ($\infty \to \infty$) satisfy the condition $T(\delta_n) = [T(\delta_1)]^n$, $n = 0, 1, 2, \cdots$. Then if $\alpha = \sum a_n \delta_n$, then $T(\alpha) = \sum a_n [T(\delta_1)]^n$ and so T is multiplicative.

- 10.1. REMARK. If the multiplicative transformation is an automorphism, then $[T(\delta_1)]^n$ will form a base. But as indicated elsewhere [2, p. 95] the only base of the form α^n , $n=0, 1, 2, \cdots$, is when $\alpha=az+b$, $a\neq 0$. Since this base is proper, the converse is also true by Theorem 7. Hence the class of multiplicative automorphisms are of the form $T[\alpha(z)]=\alpha(az+b)$, $a\neq 0$.
- 11. Conclusion. From Theorem 6 we see that for a $T \in F(\infty \to \infty)$ the quantity

$$\sigma(R; T) = \max \left[\mid T(\delta_0); R \mid, \mid T(\delta_n); R \mid^{1/n}, n \geq 1 \right]$$

is bounded for each R>0. If we write

$$|T_1 - T_2| = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{\sigma(k; T_1 - T_2)}{1 + \sigma(k; T_1 - T_2)},$$

the expression defines a complete metric topology on $F(\infty \to \infty)$. In this topology $T_1 \pm T_2$ is continuous and $T_n \to T$ as $n \to \infty$ implies that $T_n(\alpha) \to T(\alpha)$ for all $\alpha \in \Gamma$. But neither cT nor T_1T_2 is continuous in this topology. The expression $\sigma(R; T)$ itself can sometimes be used to give more information about the nature of T. For instance, $\sigma(R; T) = O(1)$ as $R \to \infty$ if and only if $T(\delta_n) = c_n \delta_0$, where c_n is a

constant with $|c_n|^{1/n}$ bounded, so that the class of such transformations is isomorphic (algebraically) to Γ^* . If $\sigma(R; T) = O(R^\rho)$, then $T(\delta_n)$ is a polynomial of degree not exceeding $n\rho$ (ρ when n=0). If $\log \sigma(R; T) = O(R^\rho)$, then each $T(\delta_n)$ is an integral function of order ρ and finite type at most. Finally it may be noted that if, for a linear T, the functions $T(\delta_n) = \alpha_n$ do not satisfy the condition of Theorem 6, then $T \notin F(\infty \to \infty)$. For instance, if $T(\delta_n) = e^{n^2 z}$ or $= \cos (n^{3/2}z)$ or $= z^{n^2}$, such a T cannot be continuous.

BIBLIOGRAPHY

- 1. V. Ganapathy Iyer, On the space of integral functions. I, J. Indian. Math. Soc. (2) vol. 12 (1948) pp. 13-30.
- 2. ——, On the space of integral functions. II, Quart. J. Math. Oxford Ser. (2) vol. 1 (1950) pp. 86-96.
 - 3. G. Valiron, Lectures on the general theory of integral functions.
 - 4. P. Alexandroff and H. Hopf, Topologie. I, Berlin, 1935.
 - 5. R. Vaidyanathaswamy, Treatise on set topology.
 - 6. S. Banach, Théorie des opérations linéaires, Warsaw, 1932.

Annamalai University