
ON THE SPACE OF INTEGRAL FUNCTIONS, in

V. GANAPATHY IYER

1. Introduction. This paper consists of two parts. The properties

of the space V of integral functions were studied in [l ; 2]. In part 1 of

this paper, I prove three theorems on the closed linear subspace of T

spanned by specified classes of integral functions. In part 2, I study

continuous linear transformations of T into T.

2. Firstly we recall some of the main definitions and results proved1

in [l; 2]. The symbol T denotes the class of all integral functions

topologised by the metric |ce—jS| where a=a(z) = 2»=o an2"i

ß=ß(z)=Y£-obnZ», and

(1) | a - ß | = max [ | a0 - h \, \ an - bn I1'", n ^ l].

The space T is a non-normable, complete, separable, linear metric

space. The adjoint space T* of continuous linear functionals defined

on T is algebraically isomorphic to the class of all power series with

positive radius of convergence so that each/£T* is determined by a

sequence

(2) (c„) with { lei1'"} bounded

and f(a) = X^-o cnan, a = ^T=o anZn. Sometimes it is convenient to

write f=f(z) = Eo" onzn.

2.1. For each R>0, we denote by T(R) the class of all integral

functions topologised by the norm | a ; R \ defined by

oo cc

(3) \a;R\ = J2\^\Pn, « = Z W-
o o

Each element fET*(R) is determined by a sequence (c„) with

(\cn\/Rn) bounded [2, p. 88]. If EET, then the closure of E in V

is the intersection of the closures of E in T(R) for R>0 and

(4) r* = E r*(.R)
B>0

[2, pp. 87-88]. We quote in the form of a lemma the main result used

in proving the theorems mentioned above and those below.

Lemma. If \a\ ^d>0, then \a;R\ ^dforR>A(l/d) where A(l/d)
is the greater of the two numbers 1 and l/d.
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1 The numbers in brackets refer to the bibliography at the end.
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2.2. We have proved in [2, p. 89, Theorems 3 and 4] that if S is

a linear subspace of V, then (1) every continuous linear functional de-

fined on 5 can be extended to the whole of T so as to be continuous

and linear and (2) if aEY is at a positive distance from S, there is one

/Gr* with f(a) = 1 and f(ß) =0 for all ßES. The result (2) stated
above leads immediately to the following theorem which will be used

to derive the results in part 1. In this theorem for a set ECr the

symbol L{e} stands for the closed linear subspace of T generated

by the elements of E.

Theorem 1. Let EEY. An element aEV will belong to L{e} if and

only iff(a) =0 for every fET* such that f(ß) =0 for all ßEE.

Part 1

3. Theorem 2. Let a=a(z) = 2!Xo anzn be an element of T such

that no coefficient an is zero. Let zn, n = l, 2, • • • , be a sequence of

distinct complex numbers. Let an=a(zz„). Let one of the following condi-

tions be satisfied:

(i) The sequence (z„) has a finite limit point ;

(ii) a is of order p and finite type and lim sup«..«, w/|z„| p= co.

Then L{an, n = \} =Y.

Proof. Let/= Yjâ cnznET* and let/(a„) =0, » = 1, 2, • • • . Then

we get

(5) 2Z cpapZn = 0, n = 1, 2, • • • .

Now g(z) = 2Z"-o cpavzp is always an integral function and if (ii) is

true, it is an integral function of order p and finite type. Since

g(zn)=0, we see from classical theorems on integral functions [3]

that g(z)=0 so that cpap = 0 and since no ap = 0, we get cp = 0 for

p = 0, 1, 2, ••• . Hence / is the identically zero functional. So by

Theorem 1 every aEY is in L{an, n — 1}. This proves the theorem.

3.1. Remark. If some of the coefficients of a= 2^" anzn be zero,

the same argument shows that under the hypothesis (i) or (ii) of

Theorem 2i{a„) will be the same as the closed linear subspace of Y

spanned by those powers of z in a whose coefficients do not vanish.

3.2. Illustrations. Every integral function could be obtained as

the uniform limit (in any finite circle [l, p. 18, Theorem 3]) of finite

linear combinations selected from each of the following sequences:

(1) a(z/n), n = l, 2, • • • , where no coefficient is zero in a

= 2Zô° anz".
(2) e">lll,n = l, 2, ■ ■ • .
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(3) cos 27T0M1/2+sin 2-wzn112, » = 1, 2, • • • .

4. If a — 2ó° anZn, ß = 2Zô° bnzn, we define a o ß by

00

« o ß = X) «»&n2n.
o

We denote by (a)n the function a o a o a o ■ • • o a, n times.

Theorem 3. Let a= 2Zo° anznET be such that Re (an) is a strictly

decreasing sequence. Then L {(a)n, n ^ 1} is equal to T.

Proof.   Let /= 2^L0   CpZ'ET*   he   such   that f[(a)n]=0,   n

= 1,2, • • • . This gives the relations

00

(6) J2 cpap = 0, m = 1, 2, 3, ••• .

Let

oo

(7) f («) = E cpape°r>\
p=0

Since ElcPap| converges by (2) and ap—K) as £—»°°, we see that

g(z) is an integral function. By (6), gln)(0) =0, w = 0, 1, 2, • • • . Hence

g(z)=0. If X>0, we have

/» X co n X
g(z)e-a«zdz = Kc0ao + Yl cpap I    e-^-^'dz.

0 p-l •/ 0

In virtue of the hypothesis on Re (an) the expression

00 y» /

Z)cpaJ> I
p=l •/ 0

-(oo—ap)*A

is bounded as X—» °°. So (8) gives c0ao = 0 and so Co = 0 (since no a„ is

zero by hypothesis). Repeating the argument and using induction

we see that c„ = 0 for « = 0, 1, 2, • • • . Therefore L{(a)n, n^l} =T

as in the previous theorem.

4.1. Remark 1. It is not necessary to suppose that Re (a„) strictly

decreases. It is enough to suppose that Re (a0) = Re (ai) ^ Re (a2)

= • • • , the a„'s are all distinct from one another, and that no an

is zero. This will follow from the above proof if we observe that for t

real and not zero

I/.
x

eitxdx

o

2
ÛT-T' A>0.
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4.2. Remark 2. Instead of supposing that the real parts of an

satisfy the conditions of Theorem 3 or those of §4.1, we can suppose

that for some real 6, the sequence o„ew has the same property.

4.3. Illustrations. Theorem 3 applies to the following functions:

1 2 z2      s3
(1) e'-z= Í + — Z + — + — +•••,

3 3 2!      3!

(2) cosh z1'2 = 1 + —+ — +•• • ,
2!       4!

z       z2 z"

(3) «(g)- 2 + - + - + •.. + -+...,
1       22 nn

but does not apply to el, the first two coefficients being equal. It can

be directly verified that there exist fEY* not identically zero such

that/[(«•)»] =0, « = 1, 2, 3, • • •.

5. Theorem 4. Le/ Z denote a set of complex numbers. Let for aÇT

the symbol (a, Z) denote the set of functions a(z+X), \EZ. Let a(p)

denote as usual the pth derivative of a. The subspaces L {(a, Z)} and

L{aip), p = 0} are the same provided one of the following conditions be

satisfied:

(i) The set Z has a finite limit point;

(ii) a is of order p and finite type and Z contains a sequence z„ of

distinct points such that lim sup«..» w/1 z„[ " = °o.

Proof. Let a = 2^(T anzn. Then

00

«Crt = 2] (n + \)(n + 2) ■ • • (n + p)ap+nz\
n=0

Soif/- 2Zo cnz"EY* besuch thatf[aip)]=0, p = 0, 1,2, • • • , we get

(9) Ap = 2] (n + i)(n + 2) ■ ■ ■ (n + p)cnap+n = 0, p = 0, 1, 2, • • • .

If/[a(z+X)]=0 forXGZ, then

(10) 2 Cp —— = 0 for X G Z.
p=0 p]-

Using the expression for a(p)(K) in (10), using the classical inequalities

for the coefficients in a power series, and noting that the double series

involved in the necessary rearrangement is absolutely convergent, we

see that (10) is equivalent to



878 V. GANAPATHY IYER [December

A       Kp
(11) T,Ap- = 0, KEZ.

p-o        pi

The series in (11) converges for all X and so under (i) of the theorem

(9) and (10) are equivalent so that the theorem follows from Theorem

1 in this case. To prove the same under (ii) of the theorem we have to

show that ~%2ApZp/pl is an integral function of order p and finite

type. To do this it is enough to prove that p11?] AP/p\\1/p is bounded

[3, p. 41]. Now by (2) there is a R~i such that \cn\^Kt+1,

n=0, 1, 2, • • • . Since a is of order p and finite type, there is k2

such that n1/p|an|1/',áA'2, » = 1, 2, • • • . If p^l, we have

I A, | á ¿ (» + 1) - • • (» + P)(n + p)-'n+P)hK.TKTP
n—0

úKiKlp-v"t(KiK2)n(n + p)P'n".

n=0

Let t be the integral part of pp. If p is large and 0 ^ n ^ t, it is easily

seen that (n+p)p~nlp^pp. Hence

\Ap\ïKiKÏpp-pl' ±(KiK2)"
n=0

+ KiKP(KiK2) YP" i (KiK2)"n-in+t-pp)IP.

n-l

Since \t—pp\ _1, we see from the above that Pll,l\Ap/p\\llp is

bounded as p—► «> noting that (a+b)Up^allp+bllp, a, b>0 and

[pp(pl)~1]l'p = 0(l) as p—><». This completes the proof of the

theorem.

5.1. Illustrations. Consider a = e*. Here a(n) =e^Qn(z) where

Qn(z) is a polynomial of precise degree n. Since zn, w=0, 1, 2, • • • ,

can be expressed as a finite linear combination of Qo(z), Qi(z), • ■ • ,

and every integral function could be put in the form e**ß where

ß is an integral function, it follows that L{aM, n^O} =T. Hence

the set L{e(z+n~1)\ n^l} or the set L{eii+nll3)t, n^l} is the whole

space T. Note that if a = ez, then L{ain), n^O} is merely the one-

dimensional subspace of constant multiples of ez.

Part 2

6. We now consider continuous linear transformations whose

domain is the whole of T and whose range is in T. When the range is

also the whole of T, we use the usual term "onto." The main result
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in this connection is that every such continuous linear transformation

can be specified in terms of a family of continuous linear transforma-

tions of normed spaces into normed spaces. We denote by T(Ri—*R2)

a continuous linear transformation whose domain is Y(Ri) and range is

in Y(R2). We denote the family of such transformations by F(Ri-+R2).

Consistent with this notation we denote by r( « —> 00 ) a continuous

linear transformation of Y into Y and the family of such transforma-

tions by F(co—»00).

7. Theorem 5. The following relation is valid:

F(co-+«,)=  J!  {DF(Äi-»ä,)}.
R2>0     \Ri>0 f

In other words, each T(00 —>00) is a T(Ri-^R2) for each R2>0 and a

corresponding suitably chosen Pi>0.

Proof. The topology Y(R) becomes weaker as R increases (in the

sense of [4, p. 62]) and Y is the topology just weaker than all the

r(P), P>0 [2, p. 87]). By known properties of stronger and weaker

topologies [5, p. 71] it follows that a P(oo—>oo) is a T(<n-+R2) for

each P2>0. Hence

(12) F(«>-+~)C U F{*-+¡U).
Aj>0

Now suppose that a linear transformation T of Y into Y is not con-

tinuous. Then there exists a sequence (ap) of elements of Y such that

|aP|—>0 as p—><x> but |P(ap)| ^d>0, p = l, 2, • • • . By the lemma

of §2.1, we see that | T(ap);R\ ^d for R>A(l/d), that is, T is not a

r(°o->P2) for R2>A(l/d). This along with (12) proves that

(13) F(oo -+ 00) =  IJ Pi™ -»*»)•
Ä2>0

Now letP2>0 be fixed. Any T(Ri-+R2), Ri>0, isa T(<*-+Rt). Hence

(14) £ F(Ri-^R2)EF(oo-+ R2).

Bl>0

Suppose that a linear transformation T of Y(Ri) into Y(R2) is not

continuous for any Ri>0. Then by known properties of normed

spaces [6, p. 54] we can, for each positive integer p, find an element

ap of Y(p) such that \ap; p\ ^i/p while | T(ap); R2\ =1. From the

definitions of |a; R\ and \a\, it is easily verified that \ap\ ^-\/p and

so \ap\ —>0 as p—*•<», while | T(ap); R2\ —Í. This proves that such a

T is not a 7\<x>—>R2). This along with (14) proves that



880 V. GANAPATHY IYER [December

(15) Z FCRi -» R2) C F(» -* F2).
Bl>0

The theorem follows from (13) and (15).

8. We write 5n=zn, » = 0, 1, 2, • • • . Theorem 4 leads to the fol-

lowing result.

Theorem 6. A necessary and sufficient condition that there exists

a 7"= jT(«>—►») with T(8n)=an, n — 0, 1, 2, • • • , is that, for each

R>0, the sequence \an; R\1/n is bounded.

Proof. TEF(oo->co) with T(ôn)=an, » = 0, 1, 2, • • • . Then by

Theorem 4, for each i?>0, there is an Fi>0 such that jT£F(2?i—>2?).

Hence by known properties of transformations between normed

spaces [6, p. 54, Theorem 1 ], there is a K = K(R) such that

| T(Sn); R | = | an; R \ ^ K \ Sn; Ri | = KRÎ.

This proves that the condition is necessary. Conversely let the condi-

tion of the theorem be satisfied by the sequence (an) of elements of T.

If a = 2b-o onbn, then | an\1/n—>0 as «—><». Hence the series ^anan

converges in V to an element of T [l, p. 18, Theorem 3]. Now define

T(a)= ^T£ anan for aET. Then T(ô„)=an, n = 0, 1, 2, • • • , and

for each 2? >0 we have | T(a);R¡ úK-\a; Ri\ ,2 that is, TEF(Ri->R).
So by Theorem 4, TEF(<x>—>=°). This completes the proof of the

theorem.

8.1. Remark. If an = T(ôn), n=0, 1, 2, • ■ • , satisfies the condition

of Theorem 6, there is one and only one transformation of F( oo —> oo )

satisfying F(5„) =a„. This does not preclude the existence of discon-

tinuous linear transformations T' with T'($n) —an. By using any

Hamel basis containing (ôn) we can always construct such discontinu-

ous transformations.

9. Automorphisms of T and bases. We have defined a base of T

as a sequence an, « = 0, 1, 2, • • • , of elements of T such that every

aET can be uniquely represented as a convergent series

OO

(16) « = H tn(a)an
o

[2, p. 92]. If, in (16), | tn(a) 11/n->0 as »->« for every aET, then we

shall call the base (a„) a proper base (for instance the bases of [2,

'Here K and 2?i are the numbers for which \a„; R\ ^KR"v n = 0, 1, 2, • • • .

Such numbers exist by the hypothesis on (a„).
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p. 93, Theorem 8] are all proper). The following theorem gives the

relations between automorphisms of Y and bases.

Theorem 7. If T is an automorphism (that is, a bi-uniform, bi-

continuous, linear transformation of Y onto Y), then every base is trans-

formed into a base; in particular T(8n), « =0, 1, 2, • • • , will be a base.

Let T be a transformation of F( <x> —* °o ) such that T(8n) form a base.

Then T will be an automorphism if one of the following conditions be

satisfied:

(i) T is a transformation of Y onto Y.

(ii) T is a closed transformation, that is, takes closed sets in Y into

closed sets in Y.

(iii)  The base T(8n) is a proper base.

Proof. The first part of the theorem is an easy consequence of the

definition of automorphisms and bases. To prove the second part,

let T(Y) denote the range of T. If T(8H) is a base, we show that T

transforms Y onto 7Xr) in a one-to-one manner. If a= ^2an8n,

ß= 2^Wn, then, since T is continuous, we get T(a) = ^anT(8n)

and T(ß) = ^,bnT(8n). If T(a) = T(ß), we see from the definition of a

base that an = bn, n=0, 1, 2, • • -, and therefore a=ß. Now if we

know T(Y) =T, then by a known theorem [6, p. 41, Theorem 5] the

inverse transformation (which exists as just now shown) is also con-

tinuous and obviously linear. So T will be an automorphism. So we

have to show that under the conditions of the theorem T(Y) =Y. In

case (i) this is true by hypothesis. In case (ii), since T(8n) is a base,

we have for every aEY

a = 23 tn(a)an = lim   T\   X) hi^v   .
n-»»        L p=0 J

so that P(r) is dense in Y. Since T is closed, T(Y) must be closed in

T and so P(r) =Y. In case (iii), we have for aEY

a = lim   P    ¿ tp(a)8p   .
*-**     L p=o J

Since the base is proper, 23"=o tp(a)8p converges to an element ßEY.

Hence 7\r) =T in this case also. This completes the proof.

9.1. Remark 1. The above theorem shows that the class of closed

transformations T of F ( oo -> oo ) for which T(8n) form a base coincide

with the class of automorphisms.

9.2. Remark 2. I have not been able to prove or disprove the

existence of improper bases. Nor is it known that every base (a„)
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satisfies the condition that |a„; R\1/n is bounded for each P>0. It is

likely that every base is proper and satisfies the above condition in

addition. If this be so, the previous theorem shows that there will be

a one-to-one correspondence between bases in Y and automorphisms

ofr.

10. Multiplicative transformations. A transformationTEF( °° —► «> )

is said to be multiplicative if T(aß) =T(a)T(ß) for a, ßEY. The fol-

lowing theorem gives a complete characterisation of such trans-

formations.

Theorem 8. Let TEF (co—»oo) and T(8i)=a. Then if T is not

identically zero, it is multiplicative if and only if T(8n)=an, n

= 0, 1, 2, ■•• . Moreover T(ß)=ß[a(z)],ß=ß(z)EY.

Proof. Let T be not identically zero. Then the equation T(a)

= T(a)T(8o) shows that F(5o) = l. From the equation 5ro+n = SroSn

we see that T(8n) = [P(5i)]n, w = 0, 1, 2, • • • . So if the transforma-

tion is multiplicative, the condition of the theorem is satisfied. Con-

versely let a TEF («>—»<») satisfy the condition T(8n) = [T(8i)]n,

n = 0,1, 2, • • • . Then if a = 2^an8n, then T(a) = 2Zan [r(8i)]B and so

T is multiplicative.

10.1. Remark. If the multiplicative transformation is an auto-

morphism, then [P(5i)]n will form a base. But as indicated elsewhere

[2, p. 95] the only base of the form an, n = 0, 1, 2, • • • , is when

a=az+b, ay^O. Since this base is proper, the converse is also true

by Theorem 7. Hence the class of multiplicative automorphisms are

of the form T[a(z)] =a(az+b), a^O.

11. Conclusion. From Theorem 6 we see that for a TEF(<& —><»)

the quantity

a(R;T) = max [ | T(S0); R |,   | T(8n); i?!1'«, n = l]

is bounded for each Pv>0. If we write

It      t I     V   1      ff(*; Tl - Ti)
\ J-1 -■ i 2   = 2-1 —'-'

tk 2*   1 + c(k; Ti - T2)

the expression defines a complete metric topology on F(«—>oo). In

this topology Ti + T2 is continuous and Tn—>T as n—> » implies that

T„(a)—>T(a) for all a£r. But neither cT nor TiT2 is continuous in

this topology. The expression a(R; T) itself can sometimes be used

to give more information about the nature of T. For instance,

a(R; T)=0(1) as R—>°o  if and only if T(8n)=cn80, where c„ is a
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constant with |c„|1/B bounded, so that the class of such transforma-

tions is isomorphic (algebraically) to T*. If a(R; T)=0(R"), then

T(8n) is a polynomial of degree not exceeding np (p when w = 0). If

log ff(R; T) =0(R"), then each T(5„) is an integral function of order p

and finite type at most. Finally it may be noted that if, for a linear T,

the functions T(8n) =an do not satisfy the condition of Theorem 6,

then F£F(oo—>co). For instance, if T(8n)=e"iz or =cos (nmz) or

= zB', such a T cannot be continuous.
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