
ESTIMATING EIGENVALUES1

CHANDLER DAVIS

1. Introduction. In §2 of this note is pointed out a simple gen-

eralization of the ingenious method of Kato [3]2 for locating eigen-

values.

In the remaining sections, a similar idea is used to demonstrate an

iterative procedure for finding arbitrarily good upper and lower

bounds for any isolated eigenvalue of a bounded self-adjoint operator.

It is the only procedure available which will do this; the previously

existing method which comes closest is that giving simultaneous

convergence to « eigenvalues which are lower (or higher) than any

other point of the spectrum (see [4, §14.5, and references there]).

2. Extension of the method of Kato. Let A be a self-adjoint

operator on a Hubert space 3C (not necessarily separable; real or com-

plex scalars); let E(X) be the resolution of the identity for A, and

S (A) its spectrum. Supposes (.4) is disjoint from each of the « open

intervals3 («i, a2), • • ■ , (a2„_i, a2n). If we define

n

P(S) - IT Pifr),    with    P,(X) = (X - aa-i)(\ - an),
¿=i

then PQi)=0 on S (.¡4), since each P.(X) is. (If ai= — », omit (X — txi)

from Pi.) Therefore,

p 00

(1) (P(A)x, x) =  )    P(\)d(E(X)x, x) = 0
J —oo

for any xE3C in the domain of P(A). Notice that (P(A)x, x) is a

linear polynomial Qx(au • • • , a2„) in the a, and that, for any chosen

x, the coefficients may be calculated. These are the fundamental

ideas of the method.

Now assume we have « +1 open intervals (ci, h), ■ ■ ■ , (an+i, bn+i),

all known to be disjoint from S (A).A Our objective is to gain further

information about S (A), therefore to replace some a by a lower value

Received by the editors January 17, 1952.

1 The author thanks C. L. Dolph for providing him, in several lectures and private

conversations, with an excellent introduction to approximation problems.

* Numbers in brackets refer to the bibliography.

' This notation for open intervals is the same as that which will be used for inner

products in 3C, but it will always be clear from context which is meant.

* It is not necessary to exclude the case ai = b¡, that is, (a,-, 6¡) void.
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or some b by a higher value. Consider, for example, the problem of

improving ak, k>l, when we know that the portion of the spectrum

between bk-i and ak consists of one isolated point \k. We may proceed

as follows.

Choose a nonzero y£3C. By (1), we have

Qv(ai, bi, • ■ ■ , ak-i, ß, a*+i, bk+x, • • • , a„+i, ¿>B+i) ̂ 0    for ß = 6*_i.

Examine the coefficient ol ß; if it is non-negative, the method fails

and we must try a different choice of y. If it is negative, then

increasing ß decreases Qy. We find the solution ß=j30 of

Qv( • • ■ ,ß, • ■ • )=0; then ßo^bu-i. Also, SU)A[aw, ß\] is not

empty. For if it were we could prove Qy( • • • , ß, • • ■ ) |= 0 for some

ß>ßo, by (1) and the fact S (A) is closed, contradicting the linearity

of Qy. Therefore ak-i<Kk^ßo, so that if ßo<ak we have improved our

information about the value of X* in the direction desired. (If ßo^ak,

we have learned nothing.)

Notice that if S (A)C\[bk-i, ak] were not known to consist of a

single point, /30 would give merely an upper bound on the value of

the left-hand end point of that set.

Of course in the above we might use a trial function y containing

parameters, which then could be adjusted to minimize ßo.

Lower bounds are treated in a similar way.

The classical Rayleigh-Ritz method is a special case of the above,

for« = l, ai=-oo, bi=0,P(X)=K-ß.

The general case for » = 1 is given by Kato [3].

The extension given here, which consists in increasing n, is be-

lieved to have serious limitations in computational work, at least

when A is unbounded. For if the trial function has components in

the subspaces (I—E(X))5C for large X, these will give an inordinately

large contribution to the integral in (1) when high powers of X are

present. It is easy to find an A and a y such that Kato's method,

even though it is unable to use all the information one has to begin

with about S (A), still gives better estimates than the extended

method.

3. Convergence to an arbitrary eigenvalue. Let A, ECK), S (A) be

as before. Suppose for definiteness that ECK) =E(Kr). Again we use

the spectral representation of a polynomial in A, but it suffices here

to consider (for real b)

(2) B^(A-b)2=  f   (K- b)2dE(K).
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We make the following observation:

If §(A)r\(b — k, b+k) consists of a finite number of eigenvalues

X,-, • • • , X¿', then S(B)(~\[0, k2) consists of the corresponding eigen-

values (Ki—b)2, • • • , (Ki' — b)2; the eigenfunctions belonging to a X,

here belong also to the corresponding (X, — b)2. (Also, the rest of the

spectrum of A transforms in the same way.)

The proof is easy. Rewriting (2) and making the necessary changes

of variable, we get

B = f   (X - b)2dE(\) + f   (X - b)2dE(\)

/I   CO p   CO

vdE(- v1'1 + b) + I    vdE(v"2 + b).
0 J 0

Thus, if we write the spectral resolution of B as JZxvdF(v), with

F(0)=0 and F(v) =F(v~), we have F(v) =E(v1l2+b)-E'(-v1'2+b),

where E' is simply E renormalized: E'(X)=£(X+) =E'(\+).

The italicized observation above follows.

Henceforth assume A (therefore also B) bounded. Define ¡»î^inf S (B),

and assume it is an isolated point of S (B).

Iterative methods are available which provide a sequence of num-

bers Hi converging to vi from above, and a sequence of elements

y¿£3C converging strongly to an eigenfunction Xi of B belonging to

Vi, see, for example, [2].

The assumption that vi is an isolated point of S (B) is equivalent to

the assumption that the nearest point X' of S (A ) to b is an isolated

point. (This can of course be guaranteed in advance in many of the

most important problems.) Suppose for a moment that it is also

known in advance that \' = b. Then the sequence of numbers n\/2+b

converges to X' from above, and the Xi above is an eigenfunction of A

belonging to X'.

A similar situation exists if X' <b.

Similar remarks hold if vi is not an isolated point, except that then

strong convergence to an eigenfunction can not be guaranteed. For

simplicity, the remainder of this note will not explicitly treat this case.

There are two limitations to the procedure. The first is that, if one

begins the approximation of vi with a trial function orthogonal to the

manifold of eigenfunctions belonging to vi, one gets convergence, not

to vi, but to some larger element of the spectrum. This difficulty is

familiar and need not be discussed here.

The second difficulty is this: Suppose there is no single closest

point of S (A) to b, but two, \{ and X2, Xi -b = b-\{ =v\/2. A pro-
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cedure such as that of [2] gives a sequence y,£3C converging strongly

to an eigenfunction Xi of B belonging to vi; but we have in general

xi = x( + x2,   with   Ax{ = Xi x{,   Ax2 = K2x2,

with no assurance that either x{ or x2 is null. Call this the "induced

degeneracy difficulty" for future reference (§5).

Before stating our result formally and finishing the argument (§5),

we give one form of the procedure of this section for which a direct

proof of convergence can easily be given without appealing to the

literature.

4. One form of the iteration procedure. It will readily be seen that

the following is equivalent to using the idea of the preceding section

together with the Kellogg method [l, III, §10.5].

Let A be as before; let b he a real number such that the unique

element X' of S (A) which is closest to b is an isolated point; and

let Vo be of unit norm and not orthogonal to the manifold SW(X') of

eigenf unctions belonging to X'. Call the projection of y0 on MÇK'),

a¿x', where öo' >0, \\x'\\ =1.

Define y,-, i = l, 2, • • • , by yt+i = Cy¿/||Cy<||, where C= — (A— b)%
+k2. The only requirement6 on k2 is that

(3) 2k2 > \\A -b\\2+ (K'-b)2.

x' is an eigenf unction of C belonging to the eigenvalue c' = — (X'—b)2

+k2>0.

Each y i may be written (uniquely) in the form

(4) yi = aiX + at yi ,

where a[ >0, ai' >0, y\' J_x', \\yi'\\ =1- (Assume no yt- is equal to x',

since that case is trivial.) Here yi' ±5W(X') ; this is proved by a stand-

ard induction on ♦.

In

„ 1 1 1  1     H/-* n
Cyi = aie x + a, Lyt ,

we note that the two orthogonal elements in the right member are

respectively equal to ||Cy,||a1'+1x' and |

of equal elements and eliminating || Cyt

tions gives

a.+i       \\Cyi ||   at

CVilK+iyi+i. Equating norms
from the two resulting equa-

*<+i

* But large k2 gives slow convergence.
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Therefore if we show ||Cy,''||/c' is bounded below 1, we shall have

shown a¡' /aí —»0.

But

ilQyí'll2 =   f V(X - b)2 + k2)2d(E(\)y'i', y'/)
J -a,

Ú (-(X" - b)2 + k2)2 f°d(E(\)y'i', y'/)
J -00

= (-(X" - b)2+ k2)2 < c'\

Here X" denotes a point which has minimum distance from b of any

point of S (^4) other than X'; and the inequalities are justified by

yi'IMÇK') and by (3).
Hence aí'/aí —»O, and, because of aí 2+a¿"2 = l, ai' —>0. Referring

to (4), we see that y —*x' strongly.

5. Conclusion. The main result, accordingly, is this:

Given a bounded self-adjoint operator A on an arbitrary Hubert space

3C ; given a real number b such that there is a single point X' for which

min \\b—X| ; X£S(.4)} is attained, and X' is an isolated point of

2>(A); and given an element of 3C not orthogonal to the manifold "MÇK')

of eigenfunctions of A belonging to X' ; then we can construct a sequence

of elements of 3C converging strongly to an element (of norm 1) of M(\'),

and a sequence of numbers converging to X'.

The proof of the last statement is not yet complete. We showed in

§3 that we can find a sequence Hi converging to (X' — b)2; but we did

not show how to determine the sign of X' — b.

Define for this purpose 77,= (Ayiy yi), $=((A —t)i)2yi, yi), where y i

is one member of our approximating sequence of functions of norm 1.

Represent y< again in the form (4). Then

/2   / ;/2 ,/       /,
r\i = a,-  X  + a{   (Ayt , y{ )

= X  + o,-   ((A - X )y{ , yi ),

since aí 2+a/'2 = 1 ; hence

¡Vi - X' I = a'i' '\\A - X'U- 0,

and the rjf will serve as the sequence of numbers in the theorem. The

proof is therefore finished. We note also the usefulness in this con-

nection of the trivial relation ef ̂ (Xj — ij,-)2, where X? is a closest point

of S (^4) to rji (ultimately X?=X'). This estimate of the error of ap-

proximation to X' is ultimately a good one, since it can be shown that
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e2—K) as a'i'2[a'i2; hence it may be useful in determining the sign of

K'-b.
The "induced degeneracy difficulty" remains unresolved. It is

more serious than it might appear, because if the nearest points of

S (^4) to b are, say, X" below and X' above, with b—X" very slightly

larger than X' — b, then even though the procedure succeeds it clearly

may require very many steps to give an 77» numerically close to X'.

Of course one can try a new value for b at any stage, but the author

has not developed any standardized scheme for deciding when to do

so.

However, this observation seems pertinent: Applying the Ray-

leigh-Ritz approximation to the operator B of §3 is solving an equa-

tion of the form ({(A — b)2—a]y, y) =0 for a, b being fixed; applying

Kato's approximation to A is solving an equation of the form

( {(A — a)(A —ß) }y, y) =0 for one of a and /?, the other being fixed.

The latter procedure is much like the first, so that presumably a

convergent approximation scheme could be based on it also; and it

has the advantage that, essentially, the b above is varied as one goes

along, so that the "induced degeneracy" should not arise. The same

applies, of course, to the extension given in §2.

The author hopes to develop this idea in a future note, as well as

possible extensions to unbounded operators.
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