
ABSOLUTE CONVERGENCE OF
CONTINUED FRACTIONS1

RALPH E. LANE

1. Introduction. Consider the continued fraction

ai
(1.1) h + --■

Oi — a2

b2 — a3

h-,

where/i is a number, \ai, a2, a3, ■ ■ • } is a sequence of nonzero num-

bers, and {bi,b2,bs, • ■ ■ } is a sequence of numbers. We obtain condi-

tions necessary and sufficient for (1.1) to converge absolutely, and we

indicate their relationship to older sufficient conditions. We find a

new characterization of positive definite continued fractions, whose

importance is emphasized by the fact (Theorem 4.2) that if (1.1) con-

verges, then there is a positive definite continued fraction which is a

contraction of (1.1). We also obtain new sufficient conditions for

absolute convergence of positive definite continued fractions.

2. Continued fractions and sequences of linear fractional trans-

formations. In this paper, a subscript p denotes a positive integer.

By the generator of (1.1) we mean the sequence {ti(u), t2(u),

h(u), ■ ■ • } of linear fractional transformations such that ti(u)

=fi+ai/(bi — u) and tp+i(u) =tp[ap+i/(bp+i — u)] for p — \. We denote

this sequence by t(u).

Remark 2.1. For a sequence s(u) of linear fractional transforma-

tions to be the generator of a continued fraction, it is necessary and

sufficient that si( 00)5^00 and sp(Q) =sp+i(<x>) for p = l.

By the sequence of approximants of (1.1) we mean the sequence

\fu h, fi, ' ■ " } such that/j, = /p(oo) for p = \. We denote this se-

quence by/.

Remark 2.2. For a sequence x of points in the complex plane to be

the sequence of approximants of a continued fraction with nonzero

partial numerators, it is necessary and sufficient that Xij¿ 00 and xp

?¿xp+i for p=\.
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If / has the property that there exists a positive integer n such

that (1) the sequence {/„, /„+i, /n+2, ■ ■ ■ } is bounded and (2) either

n = 1 or /„-i = oo, then by B¡ we mean the set of all sequences R such

that for p ^ 1

(i)    Rp is a circle plus its interior,

(2.1)    (ii)   RpDRp+i, and

(iii) fp is in Rp if p^n.

Theorem 2.1. If f is bounded, then for R to be a member of B¡ it is

necessary and sufficient that

(i)    i?i is a circle plus its interior,

.     .     (ii)   if p^, 1, then tp1(Rp) is a closed half-plane or a circle plus

its exterior, and

(iii) if p^l, then ̂ (RJDt;1^!).

Moreover, if R is a sequence in B¡, and if p¡tl, then tPl(Rp) is a closed

half-plane if fp is a boundary point of Rp, or is a circle plus its exterior

if fp is an interior point of Rp.

Proof. The theorem is a direct consequence of the definitions of/,

t(u), and Bf.

We denote by h the sequence {hi, h2, h3, • • • } of points in the

complex plane such that il p^l then hp=t~l(<x>). From the relations

h(bi) = oo and tp+i(u) =tp[ap+i/(bp+i — u)}, it follows that

(2.3) hi = bi   and    hp+i = bp+i — aP+i/hp lor p ^ 1.

If £ = 1, then /„(oo) =fp, tp(0) =fp+i, and tp+i(bp+i) =fp; so that

/p = oo if and only ii hp = <x>,

(2.4) /p+i = oo if and only if hp = 0, and

fp= oo if and only if hp+i = bp+i.

If £ = 1, and if/p^ oo and/p+i?^ oo, then

(2.5) tp(u) =/„ +
hp — u

(2.6)

If £ = 1, and if/p7^ oo,/p+1=?í oo, andfp+i,* <», then

/p+i — /p+2      ¿p+i — Äp+i ap+i

fp — fp+i hp+i hphPnp+i

3. Conditions necessary and sufficient for absolute convergence.

If x is a sequence of points in the complex plane, the statement that

x converges absolutely means that there exists a positive integer n
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suchthat (1) if p — n,thenxp9^ oo and (2) 2Zp°=» \xp~xp+i\ converges.

The statement that a continued fraction converges absolutely means

that its sequence of approximants converges absolutely.

Theorem 3.1. For (1.1) to converge absolutely, it is necessary and

sufficient that there exist a positive integer n, a sequence s of numbers,

and a sequence q of numbers such that

(i)    sp>0 and qp5¿0for p^n, and 22"-» sp converges,

(ii)   there is a sequence R in B{ such that if p = n, then ^(Rp) is

(3.1) the region defined by the inequality sP\u\ = |u—qp\, and

(iii) there is a sequence R' in Bf such that if p — n, then qP is

int;\R¿).

Proof. A. Suppose that there exist such an integer n and such se-

quences s and q. Let m denote an integer such that if p = m, then

p — n and fp is in RP. Now Rp is a circle plus its interior, oo is not in

Rp, and hp=t~1(<x>) is not in ¡^(Rp); hence if p = m, then îp|âp|

>\hp — qp\, or sp>\(hp — qp)/hp\. Moreover, if p = m, then by (2.4)
and (2.5),

I (fp+i - fp)/[tp(qP) - fp] I = I (K - qP)/hp | < sp.

By hypothesis, fp is in Rm and tp(qp) is in P¿,, and consequently there

exists a number M such that if p^m, then tp(qp)—fp<M, so that

|/P+i— /P| <MsP. Since 2^°-n$p converges, (1.1) converges absolutely.

B. Suppose that (1.1) converges absolutely. Let n denote the posi-

tive integer such that if p = n, then fp9¿ oo and such that either w = l

or/„_i = oo. Let P„ be a circle plus its interior, with radius r and center

c such that if p = n, then 3r>i\fp — c\ >2r. Let R/ be a circle plus

its interior with radius r' and center c, such that RÚ DP« and such

that if p = n, then the inversion of fp in the boundary of Rn is in

Rn. For ptl, let Rp = Rn and Rp' =P„'. Then R is in B{ and R! is

in Bf.

For p — n, let tp(qp) be the inversion of /p+i in the boundary

of Rp. By construction, tp(qp) is in Rp , so that qp is in t~1(Rp).

Moreover, if p = n, then there exists a positive number s¿ such that

Pp is the region defined by s¿\u—fp+i\^\u — tp(qp)\; and since

3r>4|/p+i—c\ >2r, there exist positive numbers D and s' such that

\tp(q.p)-fp\ =£> and Sp' gi' for p = n. By (2.5), tP\RP) is the region

defined by ip|«| = |«-gJ, where sp = sp' | (fP+i-/P)/[iP(gP)-/P]|

<|/P+i— fp\s'/D. Hence 23"=b jp converges. This completes the

proof.

Lemma 3.2a. If s is a sequence of positive numbers, then for 2^=1 sp

to converge it is necessary and sufficient that there exist a sequence d of
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positive numbers such that for p = 1

sp+i dp

sp 1 + flp+i

Proof. Suppose that d is such a sequence. If p^l, then sp+i

+sp+idp+it^spdp; and by induction, if n is an integer greater than p,

then 2"-p+i Sk+sndn-£sPdp, so that ]>jf_i 5*< Jlt=i Sk+spdp. Hence

^¿Lj 5* converges.

Suppose that 2^ ¡[LiS* converges. Let r be a sequence of non-nega-

tive real numbers such that ^¡"-î r* converges, and for p^l, let ¿p

be the positive number such that spdp= XXh-i (fk+Sk). Then spdp

=rp+i+sp+i+sp+idp+i^.sp+i+sp+idp+i, so that Sp+i/í,>^¿p/(l+dp+i).

This completes the proof.

Remark 3.1. From the above proof it follows that if in Lemma 3.2a

the statement sp+i/sp^dp/(l+dp+¿) is replaced by either of the

statements

Sp+i            dp                 Sp+i            dp
-<-, -=-,

Sp        1 + dp+i Sp        I + dp+i

then the resulting lemma is true.

Example 3.1. Let a> — 1, ¿>>a+l, and dv = (a+p)/(b—a — 1) for

p^l. By Lemma 3.2a, the series

a+l      («+!)(«+2)

b+1      (b+l)(b + 2)

converges.

Lemma 3.2b. For f to converge absolutely, it is necessary and sufficient

that there exist a positive integer n and a sequence d of positive numbers

such that, for p~^n,

(i)   dp > 1 +dp+i if fp+i =00 or if fp =fp+2 = 00 and

(ii) dp\fp-fv+i\>(l+dp+i)\fp+i-fp+2\ if
(3.2) (a) /p+iyioo and

(b) fP?* 00 or fp+2¿¿ 00.

Proof. If / converges absolutely, then there exists a positive

integer n such that/„5^ 00 il p^.n; and by Remark 3.1 there exists a

sequence d of positive numbers such that (ii) holds for p~¿,n.

Suppose that there exist a positive integer n and a sequence d of

positive numbers such that (3.2) holds for p^n. We first show that

if p^n+dn, then fpj± 00. Suppose that m is an integer, that m^n

+dn, and that/m= 00. Then for p = m — 1, the relation (i) holds by

hypothesis, and ám_i>l+ám>l. Since fm= 00, it follows (Remark
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2.2) thatfm-iT^ oo. lífm_ií¿ oo, therefore, (ii) must hold for p=m — 2;

but this is impossible, since fm= ». Hence/m_2 = », and (i) holds for

p=m — 2, so that d,„_2>l-r-dm_i>2. If m>n+2, then (i) must hold

for p = m — 3, and ¿ra_3>3. If m>n+3, then /ra_4 = » and ¿m_4>4.

By induction, dn>m—n, so that m<n+dn. Hence the assumption

that/m= » is false; and if p = n+d„, then/,,^ ». By Lemma 3.2a,/

converges absolutely. This completes the proof.

Theorem 3.2. For (1.1) to converge absolutely, it is necessary and

sufficient that there exist a positive integer n and a sequence d of positive

numbers such that, for p = n,

(i)   if bp+i = 0, then dp> 1 +dP+i, and

(3.3) (ii) if &p+i7^0 and if tP+i(Kp+i) is the region defined by dp\u\
= (1 +dp+i) | m — bp+i |, then Kp+i is a circle plus its interior.

Proof. The conditions (3.2) of Lemma 3.2b can be written

(a) ¿p>l+dp+i if/P=/P+2,

(b) dp > 1 +dp+i if /, r¿fp+2 and /p+i = »,

(c) ¿P|/P-/P+i| >(l+¿P+i)|/P+i-/P+2| if/PKfP+2and/p+15¿ ».

Since/p = /p+i(6p+i),/p+2=/P+i(0), and » =tp+i(hP+i), the first two of

these conditions can be written

(a') dp> 1 +¿p+i if 6p+i = 0,
(b') dp>l+dp+i if ftp+i^O and Ap+1= » ;

as for the third, where bP+ir¿0 and hp+i^ », similar consideration of

the two cases (1) hp+i = 0 and (2) hp+i = bp+i, and use of (2.6) for the

case (3) hp+i^0, hp+i¿¿bp+i, shows that (c) may be written

(c') ¿p|/tp+i| >(\.+dp+i)\hp+i — bp+i\ if bp+i^O and Vh^ go-

Now if t~+i(Kp+i) is defined by dp\u\ ^(l+dp+i)\u — bp+i\, where
¿p>0, dp+i>Q, and èj+i^O, then for Kp+i to be a circle plus its in-

terior, it is necessary and sufficient that the point Ap+i=iP+1(») be

exterior to t~+i(Kp+i). Hence the conditions (a'), (b'), and (c') are

equivalent to (3.3), and the theorem now follows from Lemma 3.2b.

This completes the proof.

Remark 3.2. If <zi = l and bp = \ and <Vi-i= — cp for p^l, then (1.1)

is the continued fraction

(3.4) 1_

1 + ci

l + c2

! + •••,
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where c is a sequence of nonzero numbers. If, in the notation of

Theorem 3.2, rP = dp/(l+dp+i), then tPli(Kp+i) is defined by the in-

equality rp\u\ 2s|« —1|. The condition tp1(Kp)^tp1(Kp+i) gives the

inequalities (5.5), p. 376, of Lane and Wall [l]2 for p^l. The condi-

tion Ç1(JsTp_i)DÇ1(.Kp_i1,+i) gives, for p^2, the inequalities (13.) of

Scott and Wall [2].

4. A characterization of positive definite continued fractions. The

continued fraction (1.1) is said to be positive definite3 if

(i)   1(h) > 0 and I(bp) ̂  0 for p > 1, and
(ii) there exists a sequence g of numbers such that 0<gi^l

(4.1) and, for p^l, O^gp+i^l and

|op+i| -R(ap+i)^2I(bP)I(bp+i)(l -gp)gp+i.

If F is a continued fraction, the statement that F is equivalent to

(1.1) means that the sequence of approximants of F is the sequence

of approximants of (1.1).

Remark 4.1. If F is a continued fraction, and if t'(u) is the gen-

erator of F, then for F to be equivalent to (1.1) it is necessary and

sufficient that there exist a sequence <r of nonzero numbers such that

tp (u) =tp(u/(Tp) lor p^l. If a is such a sequence, then F is the con-

tinued fraction

/i + ffiffi

ci&i — o~io~2a2

o~2b2 — o~2a%a%

C3Ô3 — • • • .

Theorem 4.1. For (1.1) to be equivalent to a positive definite con-

tinued fraction, it is necessary and sufficient that there exist a sequence

R in B; such that ifp^l, then t~l (Rp) is a closed half-plane ;i.e.,ifp^l,

then fp is a boundary point of Rp.

Proof. Let t~l(R) be a sequence of closed half-planes. Then there

exist a sequence a of nonzero numbers and a sequence k of real num-

bers such that if p è 1, then t~' (Rp) is defined by R (opu) j£ kp. We show

first that for R to be in B¡ it is necessary and sufficient that

(i) 0^¿i<i?(o-,&i) and 0gkp^R(<rpbP) for p>l, and

(4.2) (ii) R(<TP<rp+iap+i) + \o-p<Tp+iap+i\ ^2kpR(av+ibp+i-kp+i) for

2 Numbers in brackets refer to the bibliography at the end of the paper.

' This is an adaptation to (1.1) of the definition on pp. 67-71 of [3], where it is

assumed that gi/(6i)>0; e.g., in formula (17.3) of [3].
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For Pi to be a circle plus its interior, it is necessary and sufficient that

the point ti1(<x>)=bi be exterior to if1 (Pi); i.e., that R(aibi)>ki.

If p^i, then » is a boundary point of ÇX(PP), and/p = /p(») is a

boundary point of RP; similarly, fp+i is a boundary point of Pp+i. If

PPDPP+i, then the point ^(fp+i) =0 is in t~l(Rp), orO^Ap; moreover,

the point t~+\(fp) =bp+i is not an interior point of /P+i(Pp+i), or

R(o-p+ibp+i)^kp+i. Hence for ^(R) to be in Bf, the conditions (i) of

(4.2) are necessary.

Suppose that (i) of (4.2) holds. Then for p^\, ¡^(Rp+i) is defined

by
Rfip+iäp+iu) = 0   if   P^y+i&p+i) = kp+i,    or

(4.3)
ffp+ißp+i

u —
2R(o-p+ibp+i — kp+i)

if    P(crp+i6p+i) > kp+i.

ffp+i<xp+i

2R(<Tp+ibp+i — kp+i)

Hence if (i) of (4.2) holds, then (ii) is a condition necessary and suffi-

cient for the relations PpDPP+i to hold for p—\l. We conclude that

i_1(P) is in Bf if and only if (4.2) holds.

If for p — i we take <rp= —i and kp = (l —gP)R( — ibp), where gp = l

if kp=0, the theorem now follows from (4.1) and Remark 4.1. This

completes the proof.

Remark 4.2. By Theorem 4.1, a bounded increasing infinite se-

quence of real numbers is the sequence of approximants of a positive

definite continued fraction. More generally, if x is a sequence of

numbers, if xp^xp+i for p^l, and if there exists a number c such

that \xp — c\ è|xp+i — c\ for p = i, then x is the sequence of ap-

proximants of a positive definite continued fraction.

Theorem 4.2. If (1.1) converges, then there exists a positive definite

continued fraction whose sequence of approximants is a subsequence off.

Proof. Let c be the number such that fp—>c as p—* ». Then there

exists an infinite subsequence, x, of / such that if p = i, then xpt¿ »

and \xp — c\ >|xp+i — e|. By Remark 4.2, x is the sequence of ap-

proximants of a positive definite continued fraction. This completes

the proof.

5. Absolute convergence of positive definite continued fractions.

Throughout this section we suppose that (1.1) is equivalent to a posi-

tive definite continued fraction, and that k is a sequence of real num-

bers such that R is in Bf, where, for p^l, tPx(Rp) is the closed half-

plane R(u)^kp. The conditions (4.2) hold, therefore, with o-p = l,

and Ç^Pp+i) is the region defined by (4.3), for p = 1.
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Theorem 5.1. If there exist a positive integer n and a positive number

M such that \ap+i\ ^MkPR(bP+i — fep+i) for p^n, then (1.1) converges

absolutely.

Proof. Since, by hypothesis, (1.1) is equivalent to a positive defi-

nite continued fraction, its sequence of approximants is bounded;

and by (2.4), hp^ oo and hp5¿0 for p^l. Moreover, if p^n, then

t~l(Rp+^) is a circle plus its interior; let vp he the point of tpl(Rp+i)

farthest from hp. By (2.5),

fp+i — fp
<*(»») - fv

hp — vp
ÛI +

Since the origin is a boundary point of tP1(Rp+i), \vp\ is less than or

equal to the diameter of tp1(Rp+i), or \vp\ ^ |aP+i| /R(bP+i — kp+i);

hence | vp\ < Mkp. Since Rp is a circle plus its interior, hp is not in the

closed half-plane R(u)^kp; so |Ap| ^R(hp)>kp. Finally, by (2.5),

tp(vp) is the point of i?p+i nearest fp; so \tp(vp)—fp\ ^2(rp — rp+i),

where for p^l, rp is the radius of Rp. We now conclude that if p^n,

then |/p+i-/p| <2(l+lf)(rp-rp+i). Since XX» (rp-rp+i) is a con-

vergent positive-term series, (1.1) converges absolutely. This com-

pletes the proof.

Corollary 5.1a. If there exist a sequence g and a positive number M

such that, for p^l,

(i)    0<fo<l,
(Ü)
(iii)

-R(cP) S2(l -gP)gP+i, and

<M(l-gp)gp+i,

then the continued fraction (3.4) converges absolutely.

Remark 5.1. The above corollary is a true generalization of the

convergence condition ]cp| á(l — gP)gP+i, P^l, of Pringsheim [4];

compare it with the condition \cp\—R(cp)^2r(l—gp)gp+i, where

0O<l, p^i, on pp. 142-143 of [3].
Remark 5.2. It should be noted that in Theorem 5.1 and its corol-

lary we do not conclude that the common part of Ri, R2, R3, • • • is a

point. Actually there exists an absolutely convergent positive definite

continued fraction which has the property that if t_1(R) is a sequence

of closed half-planes such that R is in B¡, then the common part of

^i, i?2, i?3, • • • is a circle plus its interior. We give the following

example. Let 5 be a decreasing sequence of positive numbers such

that 23"-i sp converges. For p^l, let each of i?3j>-2, Rsp-i, and R3p

he the region defined by \u — (sp —1)| ^l+sp, and let f3p~2, ftp-u
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and/3p be boundary points of P3p such that arg/3p_2 = 0, arg/3p_i = l,

and arg f3p = — 1. Then / is the sequence of approximants of an ab-

solutely convergent positive definite continued fraction. If R' is a

sequence in Bf such that /p is a boundary point of Rp' for p = 1, then

R3p-2DR3p-2 for p = 1, and hence the common part of R{, R2, P3, • • •

is a circle plus its interior.

Theorem 5.2. Let ep=\ ap+i\/[2kpR(bp+i — kp+i)—R(ap+i)]for p = \.
If 2Zp=i (1— ep) diverges, then (1.1) converges. If there exists a sequence

d of positive numbers such that ep(2 + 2dp+i —dp) ̂ dpfor p — \, then (1.1)

converges absolutely.

Proof. A. We show first that ?"P+i/rP^2ep/(l-fep) for p¡zl, where

rp is the radius of Rp. If R(bp+i) = &p+i, then by (4.2) ap+i <0 and hence

ep = l, so that the relation rp+i/rp g 2ep/(l+ep) holds. If R(bp+i)>kP+i,

then tp 1 (RP+i) is a circle plus its interior ; let vp be the point of tP ' (PP+i)

farthest from hp, and let wp be the point of ^(Rp+i) nearest hp. By

(2.5), tp(vp) is the point of Pp+i nearest/p, and tp(wp) is the point of

Rp+i farthest from/p; so 2rp+i = | tp(vp) — /p(wP) | and 2rp — \ tp(wp) —/„I.

But by (2.5), [tp(Vp)-tp(Wp)]/[tp(wp)-fp] = \(vp-wp)/(hp-vp)\-,
hence rp+i/rp — | (vp — wp)/(hp — vp) \. Since the diameter of tp1(Rp+i) is

\vp — wp\ = \ap+i\/R(bp+i — kP+i), and since the distance from hp to vP

is \hp—Vp\ >kp+\\ap+i\ — R(ap+i)]/2R(bp+i — kp+i), it follows that

rP+i <_ 2 | üp+i |_     2ep

rp    ' 2kpR(bp+i - kp+i) - R(ap+i) + \ ap+i |       1 + ep

B. Suppose that 23"-i (1— ep) diverges. Now by definition and by

(4.2), 0<ep=i; so 23p=i (1-«p)/(1+0 diverges. But l-rp+i/rp
= l-2ep/(l+ep) =(l-ep)/(l+cp). Hence if for p = l, sp = l

— rp+i/rp, then 22 "-i sp is a divergent series whose terms are non-

negative real numbers. Since rp+i = ri(l—si)(I—s2) • • • (1— sp), it

follows that rp—*0 as />—>», and consequently (1.1) converges.

C. Suppose that there exists a sequence d of positive numbers

such that ep(2 + 2dp+i — dp)^dp for p = i. Then for p^i, rp+i/rp

= 2ev[(\ +ep) ^dp/(l +dp+i) ; and by Lemma 3.2a, 22p+i rp converges.

Since l/^i—fP\ Ú2rp, (1.1) converges absolutely. This completes the

proof of the theorem.

Example 5.1. Let s be a positive number greater than 4. If 0<cp

Up/s for p— 1, then the continued fraction (3.4) converges absolutely.

This can be seen by taking kp = \/2 and dp=Ap/(s—4) in Theorem

5.2. In Corollary 6.1a, p. 380, of [l], it was required that an infinite

subsequence of c be bounded.
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Remark 5.3. If cP = p(p+x)/(l+x)2 for p^l, it can be shown that

(3.4) converges absolutely for x>0; it was shown on p. 379 of [l] that

if x = 0, then (3.4) converges but does not converge absolutely.
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