ABSOLUTE CONVERGENCE OF CONTINUED FRACTIONS¹

RALPH E. LANE

1. Introduction. Consider the continued fraction

1. Introduction. Consider the continued fraction (1.1)
$$f_1 + \frac{a_1}{b_1 - a_2} - \frac{a_2}{b_2 - a_3}$$
where f_2 is a number $\{a_1, a_2, a_3, \dots \}$ is a sequen

where f_1 is a number, $\{a_1, a_2, a_3, \cdots\}$ is a sequence of nonzero numbers, and $\{b_1, b_2, b_3, \cdots\}$ is a sequence of numbers. We obtain conditions necessary and sufficient for (1.1) to converge absolutely, and we indicate their relationship to older sufficient conditions. We find a new characterization of positive definite continued fractions, whose importance is emphasized by the fact (Theorem 4.2) that if (1.1) converges, then there is a positive definite continued fraction which is a contraction of (1.1). We also obtain new sufficient conditions for absolute convergence of positive definite continued fractions.

2. Continued fractions and sequences of linear fractional trans**formations.** In this paper, a subscript p denotes a positive integer. By the generator of (1.1) we mean the sequence $\{t_1(u), t_2(u),$ $t_3(u), \cdots$ of linear fractional transformations such that $t_1(u)$ $=f_1+a_1/(b_1-u)$ and $t_{p+1}(u)=t_p[a_{p+1}/(b_{p+1}-u)]$ for $p \ge 1$. We denote this sequence by t(u).

Remark 2.1. For a sequence s(u) of linear fractional transformations to be the generator of a continued fraction, it is necessary and sufficient that $s_1(\infty) \neq \infty$ and $s_p(0) = s_{p+1}(\infty)$ for $p \ge 1$.

By the sequence of approximants of (1.1) we mean the sequence $\{f_1, f_2, f_3, \cdots\}$ such that $f_p = t_p(\infty)$ for $p \ge 1$. We denote this sequence by f.

Remark 2.2. For a sequence x of points in the complex plane to be the sequence of approximants of a continued fraction with nonzero partial numerators, it is necessary and sufficient that $x_1 \neq \infty$ and x_n $\neq x_{p+1}$ for $p \ge 1$.

Presented to the Society, August 30, 1949; received by the editors January 10,

¹ This paper is based on a thesis written under the direction of Professor H. S. Wall of the Department of Pure Mathematics, The University of Texas.

If f has the property that there exists a positive integer n such that (1) the sequence $\{f_n, f_{n+1}, f_{n+2}, \cdots\}$ is bounded and (2) either n=1 or $f_{n-1}=\infty$, then by B_f we mean the set of all sequences R such that for $p \ge 1$

- (i) R_p is a circle plus its interior,
- (2.1) (ii) $R_p \supset R_{p+1}$, and
 - (iii) f_p is in R_p if $p \ge n$.

THEOREM 2.1. If f is bounded, then for R to be a member of B_f it is necessary and sufficient that

- (i) R_1 is a circle plus its interior,
- (2.2) (ii) if $p \ge 1$, then $t_p^{-1}(R_p)$ is a closed half-plane or a circle plus its exterior, and
 - (iii) if $p \ge 1$, then $t_n^{-1}(R_n) \supset t_n^{-1}(R_{n+1})$.

Moreover, if R is a sequence in B_f , and if $p \ge 1$, then $t_p^{-1}(R_p)$ is a closed half-plane if f_p is a boundary point of R_p , or is a circle plus its exterior if f_p is an interior point of R_p .

PROOF. The theorem is a direct consequence of the definitions of f, t(u), and B_f .

We denote by h the sequence $\{h_1, h_2, h_3, \cdots\}$ of points in the complex plane such that if $p \ge 1$ then $h_p = t_p^{-1}(\infty)$. From the relations $t_1(b_1) = \infty$ and $t_{p+1}(u) = t_p [a_{p+1}/(b_{p+1}-u)]$, it follows that

$$(2.3) h_1 = b_1 \text{ and } h_{p+1} = b_{p+1} - a_{p+1}/h_p \text{for } p \ge 1.$$

If $p \ge 1$, then $t_p(\infty) = f_p$, $t_p(0) = f_{p+1}$, and $t_{p+1}(b_{p+1}) = f_p$; so that

$$f_p = \infty$$
 if and only if $h_p = \infty$,

(2.4)
$$f_{p+1} = \infty \text{ if and only if } h_p = 0, \text{ and}$$

$$f_p = \infty \text{ if and only if } h_{p+1} = b_{p+1}.$$

If $p \ge 1$, and if $f_p \ne \infty$ and $f_{p+1} \ne \infty$, then

(2.5)
$$t_p(u) = f_p + \frac{h_p(f_{p+1} - f_p)}{h_p - u}.$$

If $p \ge 1$, and if $f_p \ne \infty$, $f_{p+1} \ne \infty$, and $f_{p+2} \ne \infty$, then

$$(2.6) \frac{f_{p+1} - f_{p+2}}{f_p - f_{p+1}} = \frac{b_{p+1} - h_{p+1}}{h_{p+1}} = \frac{a_{p+1}}{h_p h_{p+1}}.$$

3. Conditions necessary and sufficient for absolute convergence. If x is a sequence of points in the complex plane, the statement that x converges absolutely means that there exists a positive integer n

such that (1) if $p \ge n$, then $x_p \ne \infty$ and (2) $\sum_{p=n}^{\infty} |x_p - x_{p+1}|$ converges. The statement that a continued fraction converges absolutely means that its sequence of approximants converges absolutely.

THEOREM 3.1. For (1.1) to converge absolutely, it is necessary and sufficient that there exist a positive integer n, a sequence s of numbers, and a sequence q of numbers such that

- (i) s_p>0 and q_p≠0 for p≥n, and ∑_{p=n}[∞] s_p converges,
 (ii) there is a sequence R in B_f such that if p≥n, then t_p⁻¹(R_p) is (3.1)the region defined by the inequality $s_p |u| \leq |u-q_p|$, and
 - (iii) there is a sequence R' in B_f such that if $p \ge n$, then q_p is in $t_p^{-1}(R_p')$.

Proof. A. Suppose that there exist such an integer n and such sequences s and q. Let m denote an integer such that if $p \ge m$, then $p \ge n$ and f_p is in R_p . Now R_p is a circle plus its interior, ∞ is not in R_p , and $h_p = t_p^{-1}(\infty)$ is not in $t_p^{-1}(R_p)$; hence if $p \ge m$, then $s_p |h_p|$ $> |h_p - q_p|$, or $s_p > |(h_p - q_p)/h_p|$. Moreover, if $p \ge m$, then by (2.4) and (2.5),

$$|(f_{p+1} - f_p)/[t_p(q_p) - f_p]| = |(h_p - q_p)/h_p| < s_p.$$

By hypothesis, f_p is in R_m and $t_p(q_p)$ is in R'_m , and consequently there exists a number M such that if $p \ge m$, then $t_p(q_p) - f_p < M$, so that $|f_{p+1}-f_p| < Ms_p$. Since $\sum_{p=n}^{\infty} s_p$ converges, (1.1) converges absolutely.

B. Suppose that (1.1) converges absolutely. Let n denote the positive integer such that if $p \ge n$, then $f_p \ne \infty$ and such that either n = 1or $f_{n-1} = \infty$. Let R_n be a circle plus its interior, with radius r and center c such that if $p \ge n$, then $3r > 4|f_p - c| > 2r$. Let R'_n be a circle plus its interior with radius r' and center c, such that $R_n' \supset R_n$ and such that if $p \ge n$, then the inversion of f_p in the boundary of R_n is in R_n' . For $p \ge 1$, let $R_p = R_n$ and $R_p' = R_n'$. Then R is in B_f and R' is in B_f .

For $p \ge n$, let $t_p(q_p)$ be the inversion of f_{p+1} in the boundary of R_p . By construction, $t_p(q_p)$ is in R'_p , so that q_p is in $t_p^{-1}(R'_p)$. Moreover, if $p \ge n$, then there exists a positive number s_p' such that R_p is the region defined by $s_p' |u - f_{p+1}| \le |u - t_p(q_p)|$; and since $3r > 4|f_{p+1}-c| > 2r$, there exist positive numbers D and s' such that $|t_p(q_p)-f_p| \ge D$ and $s_p' \le s'$ for $p \ge n$. By (2.5), $t_p^{-1}(R_p)$ is the region defined by $s_p|u| \le |u-q_p|$, where $s_p = s_p' |(f_{p+1}-f_p)/[t_p(q_p)-f_p]| < |f_{p+1}-f_p|s'/D$. Hence $\sum_{p=n}^{\infty} s_p$ converges. This completes the proof.

LEMMA 3.2a. If s is a sequence of positive numbers, then for $\sum_{p=1}^{\infty} s_p$ to converge it is necessary and sufficient that there exist a sequence d of positive numbers such that for $p \ge 1$

$$\frac{s_{p+1}}{s_p} \le \frac{d_p}{1 + d_{p+1}} \cdot$$

PROOF. Suppose that d is such a sequence. If $p \ge 1$, then $s_{p+1} + s_{p+1}d_{p+1} \le s_pd_p$; and by induction, if n is an integer greater than p, then $\sum_{k=p+1}^{n} s_k + s_nd_n \le s_pd_p$, so that $\sum_{k=1}^{n} s_k < \sum_{k=1}^{p} s_k + s_pd_p$. Hence $\sum_{k=1}^{\infty} s_k$ converges.

Suppose that $\sum_{k=1}^{\infty} s_k$ converges. Let r be a sequence of non-negative real numbers such that $\sum_{k=1}^{\infty} r_k$ converges, and for $p \ge 1$, let d_p be the positive number such that $s_p d_p = \sum_{k=p+1}^{\infty} (r_k + s_k)$. Then $s_p d_p = r_{p+1} + s_{p+1} + s_{p+1} d_{p+1} \ge s_{p+1} + s_{p+1} d_{p+1}$, so that $s_{p+1}/s_p \le d_p/(1 + d_{p+1})$. This completes the proof.

REMARK 3.1. From the above proof it follows that if in Lemma 3.2a the statement $s_{p+1}/s_p \le d_p/(1+d_{p+1})$ is replaced by either of the statements

$$\frac{s_{p+1}}{s_p} < \frac{d_p}{1 + d_{p+1}}, \qquad \frac{s_{p+1}}{s_p} = \frac{d_p}{1 + d_{p+1}},$$

then the resulting lemma is true.

EXAMPLE 3.1. Let a > -1, b > a+1, and $d_p = (a+p)/(b-a-1)$ for $p \ge 1$. By Lemma 3.2a, the series

$$1 + \frac{a+1}{b+1} + \frac{(a+1)(a+2)}{(b+1)(b+2)} + \cdots$$

converges.

LEMMA 3.2b. For f to converge absolutely, it is necessary and sufficient that there exist a positive integer n and a sequence d of positive numbers such that, for $p \ge n$,

- (i) $d_p > 1 + d_{p+1} \text{ if } f_{p+1} = \infty \text{ or if } f_p = f_{p+2} = \infty \text{ and }$
- (ii) $d_p |f_p f_{p+1}| > (1 + d_{p+1}) |f_{p+1} f_{p+2}|$ if
- $(3.2) (a) f_{p+1} \neq \infty and$
 - (b) $f_p \neq \infty$ or $f_{p+2} \neq \infty$.

PROOF. If f converges absolutely, then there exists a positive integer n such that $f_p \neq \infty$ if $p \geq n$; and by Remark 3.1 there exists a sequence d of positive numbers such that (ii) holds for $p \geq n$.

Suppose that there exist a positive integer n and a sequence d of positive numbers such that (3.2) holds for $p \ge n$. We first show that if $p \ge n + d_n$, then $f_p \ne \infty$. Suppose that m is an integer, that $m \ge n + d_n$, and that $f_m = \infty$. Then for p = m - 1, the relation (i) holds by hypothesis, and $d_{m-1} > 1 + d_m > 1$. Since $f_m = \infty$, it follows (Remark

2.2) that $f_{m-1} \neq \infty$. If $f_{m-2} \neq \infty$, therefore, (ii) must hold for p = m-2; but this is impossible, since $f_m = \infty$. Hence $f_{m-2} = \infty$, and (i) holds for p = m-2, so that $d_{m-2} > 1 + d_{m-1} > 2$. If m > n+2, then (i) must hold for p = m-3, and $d_{m-3} > 3$. If m > n+3, then $f_{m-4} = \infty$ and $d_{m-4} > 4$. By induction, $d_n > m-n$, so that $m < n+d_n$. Hence the assumption that $f_m = \infty$ is false; and if $p \ge n+d_n$, then $f_p \ne \infty$. By Lemma 3.2a, f converges absolutely. This completes the proof.

THEOREM 3.2. For (1.1) to converge absolutely, it is necessary and sufficient that there exist a positive integer n and a sequence d of positive numbers such that, for $p \ge n$,

(i) if $b_{p+1}=0$, then $d_p>1+d_{p+1}$, and

(3.3) (ii) if
$$b_{p+1} \neq 0$$
 and if $t_{p+1}^{-1}(K_{p+1})$ is the region defined by $d_p|u| \leq (1+d_{p+1})|u-b_{p+1}|$, then K_{p+1} is a circle plus its interior.

PROOF. The conditions (3.2) of Lemma 3.2b can be written

- (a) $d_p > 1 + d_{p+1}$ if $f_p = f_{p+2}$,
- (b) $d_p > 1 + d_{p+1}$ if $f_p \neq f_{p+2}$ and $f_{p+1} = \infty$,
- (c) $d_p|f_p-f_{p+1}| > (1+d_{p+1})|f_{p+1}-f_{p+2}|$ if $f_p \neq f_{p+2}$ and $f_{p+1} \neq \infty$.

Since $f_p = t_{p+1}(b_{p+1})$, $f_{p+2} = t_{p+1}(0)$, and $\infty = t_{p+1}(h_{p+1})$, the first two of these conditions can be written

- (a') $d_p > 1 + d_{p+1}$ if $b_{p+1} = 0$,
- (b') $d_p > 1 + d_{p+1}$ if $b_{p+1} \neq 0$ and $h_{p+1} = \infty$;

as for the third, where $b_{p+1}\neq 0$ and $h_{p+1}\neq \infty$, similar consideration of the two cases (1) $h_{p+1}=0$ and (2) $h_{p+1}=b_{p+1}$, and use of (2.6) for the case (3) $h_{p+1}\neq 0$, $h_{p+1}\neq b_{p+1}$, shows that (c) may be written

(c')
$$d_p |h_{p+1}| > (1+d_{p+1}) |h_{p+1}-b_{p+1}|$$
 if $b_{p+1} \neq 0$ and $h_{p+1} \neq \infty$.

Now if $t_{p+1}^{-1}(K_{p+1})$ is defined by $d_p|u| \le (1+d_{p+1})|u-b_{p+1}|$, where $d_p>0$, $d_{p+1}>0$, and $b_{p+1}\neq 0$, then for K_{p+1} to be a circle plus its interior, it is necessary and sufficient that the point $h_{p+1}=t_{p+1}^{-1}(\infty)$ be exterior to $t_{p+1}^{-1}(K_{p+1})$. Hence the conditions (a'), (b'), and (c') are equivalent to (3.3), and the theorem now follows from Lemma 3.2b. This completes the proof.

REMARK 3.2. If $a_1=1$ and $b_p=1$ and $a_{p+1}=-c_p$ for $p \ge 1$, then (1.1) is the continued fraction

$$\frac{1}{1+\frac{c_1}{1+\frac{c_2}{1+\cdots}}},$$

where c is a sequence of nonzero numbers. If, in the notation of Theorem 3.2, $r_p = d_p/(1+d_{p+1})$, then $t_{p+1}^{-1}(K_{p+1})$ is defined by the inequality $r_p|u| \leq |u-1|$. The condition $t_p^{-1}(K_p) \supset t_p^{-1}(K_{p+1})$ gives the inequalities (5.5), p. 376, of Lane and Wall $[1]^2$ for $p \geq 1$. The condition $t_p^{-1}(K_{p-1}) \supset t_p^{-1}(K_{p-1p+1})$ gives, for $p \geq 2$, the inequalities (13.) of Scott and Wall [2].

- 4. A characterization of positive definite continued fractions. The continued fraction (1.1) is said to be positive definite³ if
 - (i) $I(b_1) > 0$ and $I(b_p) \ge 0$ for p > 1, and
- (ii) there exists a sequence g of numbers such that $0 < g_1 \le 1$ (4.1) and, for $p \ge 1$, $0 \le g_{p+1} \le 1$ and

$$|a_{p+1}| - R(a_{p+1}) \le 2I(b_p)I(b_{p+1})(1-g_p)g_{p+1}.$$

If F is a continued fraction, the statement that F is equivalent to (1.1) means that the sequence of approximants of F is the sequence of approximants of (1.1).

REMARK 4.1. If F is a continued fraction, and if t'(u) is the generator of F, then for F to be equivalent to (1.1) it is necessary and sufficient that there exist a sequence σ of nonzero numbers such that $t_p'(u) = t_p(u/\sigma_p)$ for $p \ge 1$. If σ is such a sequence, then F is the continued fraction

fr
$$p \ge 1$$
. If σ is such a sequence, of
$$f_1 + \frac{\sigma_1 a_1}{\sigma_1 b_1 - \frac{\sigma_1 \sigma_2 a_2}{\sigma_2 b_2 - \frac{\sigma_2 \sigma_3 a_3}{\sigma_3 b_3 - \cdots}}.$$
For (1.1) to be equivalent to a possis necessary and sufficient that the

THEOREM 4.1. For (1.1) to be equivalent to a positive definite continued fraction, it is necessary and sufficient that there exist a sequence R in B_f such that if $p \ge 1$, then $t_p^{-1}(R_p)$ is a closed half-plane; i.e., if $p \ge 1$, then f_p is a boundary point of R_p .

PROOF. Let $t^{-1}(R)$ be a sequence of closed half-planes. Then there exist a sequence σ of nonzero numbers and a sequence k of real numbers such that if $p \ge 1$, then $t_p^{-1}(R_p)$ is defined by $R(\sigma_p u) \le k_p$. We show first that for R to be in B_f it is necessary and sufficient that

- (i) $0 \le k_1 < R(\sigma_1 b_1)$ and $0 \le k_p \le R(\sigma_p b_p)$ for p > 1, and
- (4.2) (ii) $R(\sigma_p \sigma_{p+1} a_{p+1}) + |\sigma_p \sigma_{p+1} a_{p+1}| \le 2k_p R(\sigma_{p+1} b_{p+1} k_{p+1})$ for $p \ge 1$.

² Numbers in brackets refer to the bibliography at the end of the paper.

⁸ This is an adaptation to (1.1) of the definition on pp. 67-71 of [3], where it is assumed that $g_1I(b_1)>0$; e.g., in formula (17.3) of [3].

For R_1 to be a circle plus its interior, it is necessary and sufficient that the point $t_1^{-1}(\infty) = b_1$ be exterior to $t_1^{-1}(R_1)$; i.e., that $R(\sigma_1 b_1) > k_1$. If $p \ge 1$, then ∞ is a boundary point of $t_p^{-1}(R_p)$, and $f_p = t_p(\infty)$ is a boundary point of R_p ; similarly, f_{p+1} is a boundary point of R_{p+1} . If $R_p \supset R_{p+1}$, then the point $t_p^{-1}(f_{p+1}) = 0$ is in $t_p^{-1}(R_p)$, or $0 \le k_p$; moreover, the point $t_{p+1}^{-1}(f_p) = b_{p+1}$ is not an interior point of $t_{p+1}^{-1}(R_{p+1})$, or $R(\sigma_{p+1}b_{p+1}) \ge k_{p+1}$. Hence for $t^{-1}(R)$ to be in B_f , the conditions (i) of (4.2) are necessary.

Suppose that (i) of (4.2) holds. Then for $p \ge 1$, $t_p^{-1}(R_{p+1})$ is defined by

$$(4.3) R(\bar{\sigma}_{p+1}\bar{a}_{p+1}u) \ge 0 \text{if} R(\sigma_{p+1}b_{p+1}) = k_{p+1}, \text{or}$$

$$\left| u - \frac{\sigma_{p+1}a_{p+1}}{2R(\sigma_{p+1}b_{p+1} - k_{p+1})} \right| \le \frac{\left| \sigma_{p+1}a_{p+1} \right|}{2R(\sigma_{p+1}b_{p+1} - k_{p+1})}$$

$$\text{if} R(\sigma_{p+1}b_{p+1}) > k_{p+1}.$$

Hence if (i) of (4.2) holds, then (ii) is a condition necessary and sufficient for the relations $R_p \supset R_{p+1}$ to hold for $p \ge 1$. We conclude that $t^{-1}(R)$ is in B_f if and only if (4.2) holds.

If for $p \ge 1$ we take $\sigma_p = -i$ and $k_p = (1 - g_p)R(-ib_p)$, where $g_p = 1$ if $k_p = 0$, the theorem now follows from (4.1) and Remark 4.1. This completes the proof.

REMARK 4.2. By Theorem 4.1, a bounded increasing infinite sequence of real numbers is the sequence of approximants of a positive definite continued fraction. More generally, if x is a sequence of numbers, if $x_p \neq x_{p+1}$ for $p \geq 1$, and if there exists a number c such that $|x_p-c| \geq |x_{p+1}-c|$ for $p \geq 1$, then x is the sequence of approximants of a positive definite continued fraction.

THEOREM 4.2. If (1.1) converges, then there exists a positive definite continued fraction whose sequence of approximants is a subsequence of f.

PROOF. Let c be the number such that $f_p \to c$ as $p \to \infty$. Then there exists an infinite subsequence, x, of f such that if $p \ge 1$, then $x_p \ne \infty$ and $|x_p - c| > |x_{p+1} - c|$. By Remark 4.2, x is the sequence of approximants of a positive definite continued fraction. This completes the proof.

5. Absolute convergence of positive definite continued fractions. Throughout this section we suppose that (1.1) is equivalent to a positive definite continued fraction, and that k is a sequence of real numbers such that R is in B_f , where, for $p \ge 1$, $t_p^{-1}(R_p)$ is the closed halfplane $R(u) \le k_p$. The conditions (4.2) hold, therefore, with $\sigma_p = 1$, and $t_p^{-1}(R_{p+1})$ is the region defined by (4.3), for $p \ge 1$.

THEOREM 5.1. If there exist a positive integer n and a positive number M such that $|a_{p+1}| \leq Mk_pR(b_{p+1}-k_{p+1})$ for $p \geq n$, then (1.1) converges absolutely.

Proof. Since, by hypothesis, (1.1) is equivalent to a positive definite continued fraction, its sequence of approximants is bounded; and by (2.4), $h_p \neq \infty$ and $h_p \neq 0$ for $p \geq 1$. Moreover, if $p \geq n$, then $t_p^{-1}(R_{p+1})$ is a circle plus its interior; let v_p be the point of $t_p^{-1}(R_{p+1})$ farthest from h_p . By (2.5),

$$\left|\frac{f_{p+1}-f_p}{t_p(v_p)-f_p}\right| = \left|\frac{h_p-v_p}{h_p}\right| \le 1 + \left|\frac{v_p}{h_p}\right|.$$

Since the origin is a boundary point of $t_p^{-1}(R_{p+1})$, $|v_p|$ is less than or equal to the diameter of $t_p^{-1}(R_{p+1})$, or $|v_p| \le |a_{p+1}|/R(b_{p+1}-k_{p+1})$; hence $|v_p| < Mk_p$. Since R_p is a circle plus its interior, h_p is not in the closed half-plane $R(u) \le k_p$; so $|h_p| \ge R(h_p) > k_p$. Finally, by (2.5), $t_p(v_p)$ is the point of R_{p+1} nearest f_p ; so $|t_p(v_p) - f_p| \le 2(r_p - r_{p+1})$, where for $p \ge 1$, r_p is the radius of R_p . We now conclude that if $p \ge n$, then $|f_{p+1}-f_p| < 2(1+M)(r_p-r_{p+1})$. Since $\sum_{p=n}^{\infty} (r_p-r_{p+1})$ is a convergent positive-term series, (1.1) converges absolutely. This completes the proof.

COROLLARY 5.1a. If there exist a sequence g and a positive number M such that, for $p \ge 1$,

- $\begin{array}{ll} \text{(i)} & 0 < g_p < 1, \\ \text{(ii)} & \left| c_p \right| R(c_p) \leq 2(1 g_p)g_{p+1}, \ and \\ \text{(iii)} & \left| c_p \right| < M(1 g_p)g_{p+1}, \end{array}$

then the continued fraction (3.4) converges absolutely.

REMARK 5.1. The above corollary is a true generalization of the convergence condition $|c_p| \le (1-g_p)g_{p+1}$, $p \ge 1$, of Pringsheim [4]; compare it with the condition $|c_p| - R(c_p) \le 2r(1 - g_p)g_{p+1}$, where $0 < r < 1, p \ge 1$, on pp. 142–143 of [3].

REMARK 5.2. It should be noted that in Theorem 5.1 and its corollary we do not conclude that the common part of R_1 , R_2 , R_3 , \cdots is a point. Actually there exists an absolutely convergent positive definite continued fraction which has the property that if $t^{-1}(R)$ is a sequence of closed half-planes such that R is in B_f , then the common part of R_1 , R_2 , R_3 , \cdots is a circle plus its interior. We give the following example. Let s be a decreasing sequence of positive numbers such that $\sum_{p=1}^{\infty} s_p$ converges. For $p \ge 1$, let each of R_{3p-2} , R_{3p-1} , and R_{3p} be the region defined by $|u-(s_p-1)| \le 1+s_p$, and let f_{3p-2} , f_{3p-1} , and f_{3p} be boundary points of R_{3p} such that $\arg f_{3p-2}=0$, $\arg f_{3p-1}=1$, and $\arg f_{3p}=-1$. Then f is the sequence of approximants of an absolutely convergent positive definite continued fraction. If R' is a sequence in B_f such that f_p is a boundary point of R_p' for $p \ge 1$, then $R'_{3p-2} \supset R_{3p-2}$ for $p \ge 1$, and hence the common part of R'_1 , R'_2 , R'_3 , \cdots is a circle plus its interior.

THEOREM 5.2. Let $e_p = \left| a_{p+1} \right| / \left[2k_p R(b_{p+1} - k_{p+1}) - R(a_{p+1}) \right]$ for $p \ge 1$. If $\sum_{p=1}^{\infty} (1-e_p)$ diverges, then (1.1) converges. If there exists a sequence d of positive numbers such that $e_p(2+2d_{p+1}-d_p) \le d_p$ for $p \ge 1$, then (1.1) converges absolutely.

PROOF. A. We show first that $r_{p+1}/r_p \le 2e_p/(1+e_p)$ for $p \ge 1$, where r_p is the radius of R_p . If $R(b_{p+1}) = k_{p+1}$, then by (4.2) $a_{p+1} < 0$ and hence $e_p = 1$, so that the relation $r_{p+1}/r_p \le 2e_p/(1+e_p)$ holds. If $R(b_{p+1}) > k_{p+1}$, then $t_p^{-1}(R_{p+1})$ is a circle plus its interior; let v_p be the point of $t_p^{-1}(R_{p+1})$ farthest from h_p , and let w_p be the point of $t_p^{-1}(R_{p+1})$ nearest h_p . By (2.5), $t_p(v_p)$ is the point of R_{p+1} nearest f_p , and $t_p(w_p)$ is the point of R_{p+1} farthest from f_p ; so $2r_{p+1} = \left|t_p(v_p) - t_p(w_p)\right|$ and $2r_p \ge \left|t_p(w_p) - f_p\right|$. But by (2.5), $\left[t_p(v_p) - t_p(w_p)\right]/\left[t_p(w_p) - f_p\right] = \left|(v_p - w_p)/(h_p - v_p)\right|$; hence $r_{p+1}/r_p \le \left|(v_p - w_p)/(h_p - v_p)\right|$. Since the diameter of $t_p^{-1}(R_{p+1})$ is $\left|v_p - w_p\right| = \left|a_{p+1}\right|/R(b_{p+1} - k_{p+1})$, and since the distance from h_p to v_p is $\left|h_p - v_p\right| > k_p + \left[\left|a_{p+1}\right| - R(a_{p+1})\right]/2R(b_{p+1} - k_{p+1})$, it follows that

$$\frac{r_{p+1}}{r_p} \leq \frac{2 \mid a_{p+1} \mid}{2 k_p R(b_{p+1} - k_{p+1}) - R(a_{p+1}) + \mid a_{p+1} \mid} = \frac{2 e_p}{1 + e_p}.$$

B. Suppose that $\sum_{p=1}^{\infty} (1-e_p)$ diverges. Now by definition and by (4.2), $0 < e_p \le 1$; so $\sum_{p=1}^{\infty} (1-e_p)/(1+e_p)$ diverges. But $1-r_{p+1}/r_p \ge 1-2e_p/(1+e_p) = (1-e_p)/(1+e_p)$. Hence if for $p \ge 1$, $s_p = 1-r_{p+1}/r_p$, then $\sum_{p=1}^{\infty} s_p$ is a divergent series whose terms are nonnegative real numbers. Since $r_{p+1}=r_1(1-s_1)(1-s_2)\cdots(1-s_p)$, it follows that $r_p \to 0$ as $p \to \infty$, and consequently (1.1) converges.

C. Suppose that there exists a sequence d of positive numbers such that $e_p(2+2d_{p+1}-d_p) \leq d_p$ for $p \geq 1$. Then for $p \geq 1$, $r_{p+1}/r_p \leq 2e_p/(1+e_p) \leq d_p/(1+d_{p+1})$; and by Lemma 3.2a, $\sum_{p+1}^{\infty} r_p$ converges. Since $|f_{p+1}-f_p| \leq 2r_p$, (1.1) converges absolutely. This completes the proof of the theorem.

EXAMPLE 5.1. Let s be a positive number greater than 4. If $0 < c_p \le p/s$ for $p \ge 1$, then the continued fraction (3.4) converges absolutely. This can be seen by taking $k_p = 1/2$ and $d_p = 4p/(s-4)$ in Theorem 5.2. In Corollary 6.1a, p. 380, of [1], it was required that an infinite subsequence of c be bounded.

REMARK 5.3. If $c_p = p(p+x)/(1+x)^2$ for $p \ge 1$, it can be shown that (3.4) converges absolutely for x > 0; it was shown on p. 379 of [1] that if x = 0, then (3.4) converges but does not converge absolutely.

BIBLIOGRAPHY

- 1. R. E. Lane, and H. S. Wall, Continued fractions with absolutely convergent even and odd parts, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 368-380.
- 2. W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 155-172.
 - 3. H. S. Wall, Analytic theory of continued fractions, New York, 1948.
- 4. A. Pringsheim, Über die Konvergenz unendlicher Kettenbrüche, Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Klasse der Bayerischen Akademie der Wissenschaften zu München vol. 28 (1898) pp. 295-324.

University of Texas