A COMPLETE SOLUTION OF THE CONVERGENCE
PROBLEM FOR CONTINUED FRACTIONS

RALPH E. LANE

1. Introduction. In this paper we consider continued fractions of
the form

(1.1) fi+ a
by — ag
by — as
where f; is a number and (for p=1, 2, 3, - : + ) @, is a nonzero number!

and b, is a number.

If f={f,} ., is the sequence of approximants of (1.1), then for f to
converge, it is necessary that there exist a positive integer #, a non-
zero number @, , and a number b, such that the sequence of ap-
proximants of the continued fraction

fa + aa
bn — Qnt1
bny1 — @y
by — - - -
is {fatp-1}ym1, Where fupp17 o for p=1, 2, 3, - - - . Consequently

the following theorem is a complete solution of the convergence prob-
lem for continued fractions.

THEOREM 1. For a continued fraction F to have only finite approxi-
mants and to converge, it is necessary and sufficient that there exist a con-
tinued fraction (1.1) equivalent to F and a sequence s of numbers such
that i

(i) 0<sp<lfor p=1,2,3,---,and

(ii) $1|:] >|b21—1], and

(iii) f, for each positive integer p,

I: Sp+1
p=|—"T"T"F"—
1 - Si_H

| [Fpenl
b
Sp | Apt+1 |
Received by the editors February 11, 1952.
1 For a solution of the convergence problem in the case in which one (or more) of
the partial numerators a, is zero, see H. S. Wall, Analytic theory of continued fractions,
New York, 1948, p. 26.
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then ;21 for p=1,2,3, - - -, and Y o, (e,—1) diverges.

It is interesting that the concepts which we use in the proof of this
theorem are essentially the ones which were used in carrying out
Wall’s program (loc. cit., p. 5) for positive definite continued frac-
tions; namely, a sequence of linear fractional transformations which
generates the continued fraction, and a “nest of circles” which pro-
vides a sequence of bounds for the approximants of the continued
fraction.

2. Lemmas. We use the following notation:

(i) The generator of (1.1) is the sequence, £, of linear fractional
transformations such that #(x)=fi+a1/(br—u) and & '%,1(u)
=a?+1/(bp+l_u)r P=1, 21 3’ DR

(ii) The sequence of approximants of (1.1) is the sequence f
=t(w); i.e., fp=t,() for p=1, 2, 3, - - -. If f =, then we write
to(u) =fpt+gp/ (hp—u).

(iii) If fis bounded, then By is the set such that RE B, if and only if
R is a sequence {R,}>; such that if p is a positive integer, then R,
is a circle plus its interior, and R, DR,41, and f, is an interior point
of R,.

LeMMA 1. If RE By, then there exist a sequence s of positive numbers
less than 1 and a sequence q of nonzero numbers such that if p is a posi-
tive integer, then t;'(R,) is the region (a circle plus its exterior) defined
by the inequality

splu| S [u—gp1,
which is equivalent to the inequality

> 5p|qpl .

=9 2
1—y5,

9»
1-5

% —

Proor. Suppose that REB;. By hypothesis, fp=£{,() is an in-
terior point of R,, so that « is an interior point of #;*(R,); hence
t,'(R,) is a circle plus its exterior. Moreover, fp41=£,(0) is an interior
point of R,1 and a fortiori of R,; hence 0 is an interior point of
t;1(R,). Let ¢, denote the inversion of the origin in the boundary of
t;'(R,). Then there exists a number s, such that 0 <s,<1 and such
that #,;"(R,) is the region defined by s,|#| <|u—g,|. If both sides
of this inequality are squared, the result can be written as (1 —s?)u#
— U —qo+qp0»=0, which is equivalent to the inequality
| 4—gp/(1 —52)| Z55|gp| /(1 —5%). This completes the proof.
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LEMMA 2. For the sequence of approximants of (1.1) to be bounded, 1t
is necessary and sufficient that there exist a sequence s of numbers and a
sequence q of numbers such that

(i) 0<s,<1 and ¢,0, p=1,2,3, - - -, and

(i) si|bs] >|b1—q|, and

(iii) o apu| | Lo Do ! s
| gotpr1| | @o@orr  Gon 1—siul ™ 1—siy
for p=1,2,3, - .

ProoF. Suppose that f, the sequence of approximants of (1.1), is
bounded. Let R denote a sequence in B;. By Lemma 1, there exist
sequences s and g such that (i) holds and such that ;' (R,) is the region
defined by s,|u| <|u—g,|, p=1, 2,3, - - - . Since #,(b;) = «, condi-
tion (ii) is merely the condition for R, to be a circle plus its interior.
Now #}(R,) is defined by the inequality s,,l api1/ (bps1—u)|
=< |ap+1/ (bpp1—u) -q,,l , which is equivalent to the inequality
|u— (b,,+1—a,,+;/g,,)| gs,,] @p+1/9»| . Hence (iii) is the condition that

t;-:l(RP) Dtp—-:l(RP+l)v or RDDRFH’

for p=1,2,3, - -.

Suppose, on the other hand, that there exist such sequences s and
g. For each positive integer p; let ¢, (R,) denote the region defined
by the inequality spl ul = I u —qpl . Then R, is a circle plus its interior;
and if p is a positive integer, then R, DR,41 and fp=1,(®) isin R,, so
that each member of f is in R;, and consequently f is bounded. This
completes the proof.

We now introduce the following notation in addition to that estab-
lished at the beginning of this section. If RE By, and if  is a positive
integer, then

(iv) ¢, is the center and r, the radius of R,; i.e., R, is defined by
the inequality [u—c,,l =r7p; and

(v) if g=p or if g=p-+1, then ¢, 41 is the center and 74,541 the
radius of £;},(R,); i.e., £;11(R,) is defined by the inequality | % —c,,p41]
Z74,p+1. We observe that |c,,,,,+1—c,,+1,,,+1| Srpitpil —Tp,pile

LEMMA 3. I'n order that r,—0 as p— o, 1t 1s necessary and sufficient
that Y 2 (1—rp41/r,) diverge, and it is necessary and sufficient that
Z;-l (rp/7p41—1) diverge.

ProoF. By hypothesis, R, DR,+1, so that {7,} ., is a nonincreasing
sequence of positive numbers. Let 7 denote the number such that
rp,—r as p—o. We write
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741 Y2 73 Tpt1

71 ry 72 p

e e R )
71 [2) p

It follows that »=0 if and only if D> ., (1—7,41/7,) diverges. From
a similar argument about the ratios 71/7,41 it follows that » =0 if and
only if Z;’_l (rp/rp1—1) diverges. This completes the proof.

LemMA 4. If p 15 a positive integer, and if g=p or g=p+1, then
Coptr=hp—gpr1(For1—0) /(e — | for1—c4|?) and

Tqp1= lgm—ll 7'4/(": - lfp+1_cql 2.

Proor. By hypothesis, R, is defined by the inequality I u—cy| =1y,
whence f£;},(R,) is defined by the inequality |t,11(%)—co| S7,,
which is equivalent to the inequality | (forr—cCg)(—hpi1) —gpir
§'ql“_hp+ll- If fos1=c,, then cgpy1=hpy1 and rq.p+l=|gp+l /Ta
and the lemma holds. Suppose, however, that fp;17#c,. Then
;11 (R,) is defined by the inequality |u—rhpp1—gpr1/(forr—ca)l
S|u—hpp| 74/ | for1—c4|, which is equivalent, since |f,,+1—cq| <rg to
the inequality

|4 = (k1 = goriFors — €/ (rs — | forr — | ]|

= I gp+1| rq/(’: - pr+1 - cq|2)»

so that the lemma follows from the definitions of ¢4,p+1 and 74,541
This completes the proof.

LEMMA 5. If p is a positive integer, then

Tpt1,p+1 p — I Cp — CP+1| -

@) . = 1,
Tp,p+1 Tp+1
and
. r Tp+l,p+1 — | Cp,p+1 — Cpil,p+1
(u) P g »+1,p+ | p,pt+ p+1l,p+ I __Z_ 1
Tpt+1 Tp.p+1

Proor. We shall prove statement (i): statement(ii) can be proved
by the same kind of argument. By hypothesis, R, DR,1, whence
Tp—Tpr1 lc,, — Cpi1 | , and  (r,— |cp—cpa | )/?p1=1; moreover,
ti(Rp) Dty (Rpr1), and consequently 7,41, 5412750410 If 7pp1=75,
then R, =R,y and t,},(R,) =¢,},(R,+1), so that (i) holds with actual
equality throughout. Suppose, however, that 7,,1 <7,. By hypothesis,
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| f,,+1—c,,| <r, and |fp+1—c,,+1| <tp41; and from Lemma 4 it follows
that

TotLotl _ Torl ro = | fori = |

(2.1)

Toott  Tp Tor— | for1 — Cpu |2 .

Let & denote the number such that kr,,+1/r,=(r,,—|c,,-—c,+1|)/r,+1;
then krpy1/rp21, and k27,/rp11>1. Let K denote the common part
of the region defined by the inequality

’:"l““%'z

(2.2) Zk

rf,+1—|u— c,,+1|2

and the interior of R,i;; then ¢,11 €K, and it can readily be seen
that K is actually a region. For lu—c,,“l <fp41, the inequality (2.2)
is equivalent to the inequality

E— 1)(krops — r2) + k| cp — c,,+1|2‘
(B —1)?

But k3 —73=1p(rp— | cp—Cpa| ) =12 = —1,| cp—Cp4a| , s0 that

Cp— kcpr1|?

1—-%

S

U —

(k= 1) (krpss — 12) + k| ¢p — cpa|”

= klcp_cp+l]2—'picp_cp+1|(k— 1)

= ’p|cp_5p+l| - k(’p_l%"'cﬁll)lcp—cp+1]
=l = copra| [rs = rp(rs — | ¢ — Cpt| )2/ff»+1]

= ’vl Cp — ¢’z»+l| [’:H —(rp — | Cp — Cpt1 l)zl/":ﬂ
=0,

since 7,41 ér,—]c,,—c,+1| . Hence K is merely the interior of R,;;.
Since fp41 is an interior point of R,y it follows from (2.1) that
Totlptl _ Tohl b= Tp — | Cp — 5r+1‘ .

Tp.p+1 Tp Tp+1

This completes the proof.

LEMMA 6. If cy=cCp1, and if r,1123 I fonr —c,,l , then

12—

ol p+1 — I Cp.p+1 — 6p+1,p+1| 1 ( p 1)
7. p+1 3\ 7511

Proor. By Lemma 4 and the hypothesis that ¢, =cp1,
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| et = Gorrpr| [ for1 = 6o [ror1on topn
Tp.p+1 - Tp.pt1 Tpt1 T
_ |fp+1 - c,| Totlotl  Tpi1
- Tp+1 Tp.p41 Tp .
But 7p41,9+1/7p.p11 2= 1 =7541/75. Hence
| et = corrpr| | for1 = 6] (f»+1.p+1 B fp+1).
Tp.p+1 - T+l Tp.p+1 T» '

consequently, if

Tp+1,p+1 — | Cp,pt1 — 6p+1.p+1|
= ]

rd
Tp.0+1

then
r
ep— 1= ( LAk AL 1)
_ Tp.p+1
—c r r
_ | for1 — o] [( pHLpHL 1)+(1_ p+l)]
Tpi1 7p.p+1 Ty
(o) o)
3 p,p+1 3 p
Now 7,/7p41—121~r,41/7,20; moreover, from (i) of Lemma 5 and

from the hypothesis that c¢,=c,1, it follows that 7,41,p01/7pp41
27p/7p11. Hence e,—12 (r,/7,41—1)/3. This completes the proof.

v

3. Proof of the theorem. Let F denote a continued fraction
f 1+ af

b — ad
b — - ..

where a; %0, p=1,2,3, - - - . Let f denote the sequence of approxi-
mants of F.

Suppose first that there exist a continued fraction (1.1), which is
equivalent to F, and a sequence s such that conditions (i), (ii), and
(iii) of the theorem hold. It follows from Lemma 2 (with ¢,=1 for
p=1,2,3, - - ) that the sequence of approximants of F is bounded.
For each positive integer p, let £,(R,) be the region defined by the
inequality s,]u] <|u—1|. By Lemma 1, Cor1p=1/(1—s>4;) and
Tpt1,p41=5p41/(1—$54,); and from the proof of Lemma 2, ¢,
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=bp+1_ap+l and ?p,p+1 =S,I a,,+1| . Hence

Tp+l,p+1 — I Cp.ptl — CP+1'P+1|

3.1 ep =

"p.p+1

By hypothesis, D_., (¢,— 1) diverges; by Lemma 5, ) oy (75/7p41—1)
diverges; and by Lemma 3, r,—0 as p— «. Hence the common part
of the regions R, is a point, ¢, and f,—¢ as p— o ; that is to say, F
converges.

Suppose that f is bounded and that F converges. Let ¢ denote the
number such that f,—¢ as p—». For each positive integer p, let
cp=c, letr,=3 Lu.b.;>p | f,,—cl ,and let R, denote the region defined
by lu—c| <7r,. Then REB; Let 7i(u)=fi+al{/(bi —u) and
7, o1 () =a) /(B4 —u) for p=1,2,3, - - -, and let sand ¢ denote
sequences such that (cf. Lemma 1) 7;%(R,) is defined by s,|u]
= | u—q,,l . Let a1=a{/q, and for each positive integer p, let b,
=b, /qp and apy1=0a,41,/qpgpr+1. We have now found a continued
fraction (1.1) which is equivalent to F and a sequence s such that
(cf. Lemma 2) the conditions (i) and (ii) of the theorem hold and
e,21forp=1,2,3, - - - . Moreover, t;'(R,;) is defined by the inequal-
ity s,l ul = | u—1 | ,so that (3.1) holds. By hypothesis and by construc-
tion, 7,—0 as p—, so that (Lemma 3) X ., (r,/7,11—1) diverges.
From (3.1) and Lemma 6, it follows that Y >, (e,—1) diverges. This
completes the proof.
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