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1. Introduction. In this paper we consider continued fractions of

the form

(1.1) fi + ai

bi — a2

b2 — az

h-,

where/i is a number and (for £ = 1,2,3, • • • ) ap is a nonzero number1

and bp is a number.

If/= {/P}p=i is the sequence of approximants of (1.1), then for/ to

converge, it is necessary that there exist a positive integer n, a non-

zero number a/, and a number ¿>„' such that the sequence of ap-

proximants of the continued fraction

in + an

b'n - an.+i

bn+i — an+i

bn+i   —   •  •  •

is {/n+P-i}p=i, where /n+P-i^ » ior p = l, 2, 3, ■ • • . Consequently

the following theorem is a complete solution of the convergence prob-

lem for continued fractions.

Theorem 1. For a continued fraction F to have only finite approxi-

mants and to converge, it is necessary and sufficient that there exist a con-

tinued fraction (1.1) equivalent to F and a sequence s of numbers such

that

(i) 0<jp<1 for p = \, 2, 3, • • • , and
(ii) $i|ii| >|6i —1|, and

(iii) if, for each positive integer p,

r ^i .        *   nr   1   i
«p =-:-ap+i - bp+i +-—       —i-1   ,

LI- sv+i l - st+i | J Lsp  ap+i Mp+i

Received by the editors February 11, 1952.

1 For a solution of the convergence problem in the case in which one (or more) of

the partial numerators ap is zero, see H. S. Wall, Analytic theory of continued fractions,

New York, 1948, p. 26.
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then Cp^l for p = l, 2, 3, • • • , and 23"_i (ep — 1) diverges.

It is interesting that the concepts which we use in the proof of this

theorem are essentially the ones which were used in carrying out

Wall's program (loc. cit., p. 5) for positive definite continued frac-

tions; namely, a sequence of linear fractional transformations which

generates the continued fraction, and a "nest of circles" which pro-

vides a sequence of bounds for the approximants of the continued

fraction.

2. Lemmas. We use the following notation:

(i) The generator of (1.1) is the sequence, t, of linear fractional

transformations such that ti(u)=fi+ai/(bi — u) and t^tp+^u)

= ap+i/(bp+i — u), p = l, 2, 3, • • • .

(ii) The sequence of approximants of (1.1) is the sequence /

=/(oo); i.e.,/p=/p(oo) for p = l, 2, 3, ■ • • . llfP¥- », then we write

tp(u)=fp+gP/(hp-u).

(iii) If/is bounded, then Bf is the set such that i?£.B/if and only if

R is a sequence {-Rp}"»! such that if p is a positive integer, then Rp

is a circle plus its interior, and RPZ)Rp+i, and fp is an interior point

of Rp.

Lemma 1. If REB/, then there exist a sequence s of positive numbers

less than 1 and a sequence q of nonzero numbers such that if p is a posi-

tive integer, then tPl(Rp) is the region (a circle plus its exterior) defined

by the inequality

u- qv

which is equivalent to the inequality

1-4
Sp\qP\

1-4

Proof. Suppose that REB/. By hypothesis, fP = tp(<x>) is an in-

terior point of Rp, so that oo is an interior point of ^(Rp) ; hence

tpX(RP) is a circle plus its exterior. Moreover,/p+i=fp(0) is an interior

point of RP+i and a fortiori of Rp; hence 0 is an interior point of

tp1(Rp). Let qp denote the inversion of the origin in the boundary of

¿¿"'(.ftp). Then there exists a number sp such that 0<sp<l and such

that tp1(Rp) is the region defined by sp\u\ ^\u — qp\. If both sides

of this inequality are squared, the result can be written as (1 — sv)uü

— qpu — qpü+qpq~p^Q, which is equivalent to the inequality

\u — qP/(l—sp)\ ^Sp\qp\/(l—sP). This completes the proof.
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Lemma 2. For the sequence of approximants of (1.1) to be bounded, it

is necessary and sufficient that there exist a sequence s of numbers and a

sequence q of numbers such that

(i) 0<jp<1 and qpy¿0, p = l, 2, 3, • ■ ■ , and

(ii) Si\bi\ > |èi — qi\, and

.....     sp I ap+i I   .
(m)    i-r +

I QpQp+iI

0p+l &P+1

1 2qPÇp+i     qp+i     i — sp+i

Sp+i

l - S2p+i

for p = \, 2,3, ■ ■ ■ .

Proof. Suppose that/, the sequence of approximants of (1.1), is

bounded. Let R denote a sequence in Bf. By Lemma 1, there exist

sequences s and q such that (i) holds and such that tP1(Rp) is the region

defined by sp| u\ ^ | u — qp\, p = 1, 2, 3, • • • . Since ti(bi) = », condi-

tion (ii) is merely the condition for Pi to be a circle plus its interior.

Now tPli(Rp) is defined by the inequality sp\ap+i/(bp+i — u)\

= |flp+i/(ôp+i — u)— qp\, which is equivalent to the inequality

| u — (bp+i — ap+i/qp) | esP|aP+i/<zP| • Hence (iii) is the condition that

Ç+i(Rp)~Dtp+i(Rp+i), or RPDRp+i,

for p = l, 2, 3, ••• .

Suppose, on the other hand, that there exist such sequences s and

q. For each positive integer p, let t~ 1(RP) denote the region defined

by the inequality sp\u\ ^ | u — qp \. Then Pi is a circle plus its interior ;

and if p is a positive integer, then RPZ)Rp+i and fP = tp( » ) is in Rp, so

that each member of/ is in Pi, and consequently/ is bounded. This

completes the proof.

We now introduce the following notation in addition to that estab-

lished at the beginning of this section. If REBf, and if p is a positive

integer, then

(iv) cp is the center and rp the radius of Rp; i.e., Rp is defined by

the inequality | u — cp\ ^rp; and

(v) if q = p or if q=p + l, then cîlP+i is the center and rSiP+i the

radius of ¿P+i(P9); i.e., Ç+i(P5) is defined by the inequality \u — e«,,p+i|

3ïrg,p+i. We observe that |cp,p+i —cp+ipP+i| ̂ rp+i,p+i —rp,p+i.

Lemma 3. In order that rp—>0 as />—»», it is necessary and sufficient

that 2Zp-i (1— rP+i/rp) diverge, and it is necessary and sufficient that

23"=i (rp/rP+i-i) diverge.

Proof. By hypothesis, PP3Pp+i, so that {rp}P=1 is a nonincreasing

sequence of positive numbers. Let r denote the number such that

rp—»r as p—» ». We write
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Tp+i       r2  fj fp-t-i

' =('-^)('-^)-('-™>

It follows that r = 0 if and only if X)"-i (1 ~rP+i/rp) diverges. From

a similar argument about the ratios ri/rP+i it follows that r = 0 if and

only if 23p_i (rp/rp+i — l) diverges. This completes the proof.

Lemma 4. If p is a positive integer, and if q=p or q=p + l, then

Cg,p+i = hP+i—gP+i(fP+i-c7)/(ria— \fp+i — cg\2) and

r<¡,p+i=\gp+i\rg/(tí - |/p+i-c9|2).

úrt,Proof. By hypothesis, Rq is defined by the inequality \u — cg

whence tp\.i(Rq) is defined by the inequality \tp+i(u)—cq

which is equivalent to the inequality \(fP+i — cq)(u — hp+i)—gp+i\

^rq\u-hp+i\. If fp+i = cq, then c?,p+i=Äp+i and ra,p+1=\gp+i\/r„
and the lemma holds. Suppose, however, that fp+i?¿cq. Then

tpl^Rg) is defined by the inequality \u — hp+i— gp+i/(fP+i — cq)\

^ \u — hp+i\rq/\fp+i — cq\, which is equivalent, since |/p+i —c„| <rq, to

the inequality

| u - [Ap+i - gpVi(fp+i - c,)/(rq - | /p+i - cq | )] |

i i 2     i i2
^ I gp+i I rJift - I fp+i - cq\),

so that the lemma follows from the definitions of c4,p+i and rSlP+i.

This completes the proof.

Lemma 5. If p is a positive integer, then

,., rp+i.p+i      rp — I Cp — Cp+i I

rp,p+i *V+i

and

,...        rp . rp+i,p+1 — I Cp,p+i — Cp+1,p+i
(u) -^ —-^ 1.

^îï+i ''p.p+i

Proof. We shall prove statement (i) : statement(ii) can be proved

by the same kind of argument. By hypothesis, RPZ)Rp+i, whence

rp — rp+i è£ | Cp — Cp+i |, and (rp — \cp — cp+i \ )/rp+i ^ 1 ; moreover,

tpli(Rp)Dtp~+i(RP+i), and consequently rP+itp+i^rp,p+i. If rp+i = rp,

then Rp = Rp+i and t~li(RP) =t~l1(Rp+i), so that (i) holds with actual

equality throughout. Suppose, however, that rp+i<rp. By hypothesis,
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|/P+i — cp\ <rp and |/P+i—cp+i\ <rp+i; and from Lemma 4 it follows

that

.     . rP+i,p+i      rP+i     rP — |/j>+i — cp\

(¿. 1)
r3>.J>+l TP       rp+l  ~  | /p+1  —  CP+1

2

Let k denote the number such that krp+i/rp = (rp—\cp—Cp+i\)/rp+i;

then krp+i/rv = \, and k'=rp/rp+i>\. Let ii denote the common part

of the region defined by the inequality

rp — I m — cp I
(2.2) ^—-^=*

rp+i- \u - cp+i\2

and the interior of Pp+i; then cp+iEK, and it can readily be seen

that K is actually a region. For \u — Cp+i\ <rP+i, the inequality (2.2)

is equivalent to the inequality

Cp KCp+\

u-
1 - k

'■    (k — Y)(krp+i — rp) + k I cp — cp+i \

(* - I)2

But ¿r2,+i-r2, = rp(rp-|c3,-cp+i|)-^=-rp|cp-cp+i|, so that

2 2 | i 2
(k — l)(krp+i - rp) + k I c„ - Cp+i |

= k\cp- Cp+i |   - rp\cp- cp+i \(k - Y)

= rp I cp — Cp+i | — k(rp — I cp — Cp+i \)\ cp — cp+i |

= \cp — Cp+i I [rp — rv(rp — \ cp — cp+i | ) /rp+i]

= rp\cp — Cp+i I [rp+i — (rp — \ Cp — cp+i \) ]/rp+i

áO,

since rp+i^rp—\cp — cp+i\. Hence K is merely the interior of PP+i.

Since/p+i is an interior point of PP+i, it follows from (2.1) that

riH-i,p+i       »Vt-i ,       rp — | cp — cp+i |
-g-k = -•

rv,p+i rp rp+i

This completes the proof.

Lemma 6. // cp = cp+i, and if rp+i — 3\fp+i—c,\, then

rP+l,p+l        I cP,jH-l        Cp+l,p+l |

3 \rp+i        /rP,p+i 3 \rp+i

Proof. By Lemma 4 and the hypothesis that cp = cP+i,
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cp,P+i — Cp+l,p+l | fp+l — cp

rp,p+l rp.p+l

fp+l — Cp

rp+i,P+i  rPlP+i

fp+i

r~p+i

fp+i.p+i

rP

rP+i

Tp.p+l

But rp+i,p+i/rJ,iP+i^lè''P+iAp. Hence

.j>+i — cp+i.p+i I       |/p+i — cp\ /rp+i.p+i

rp,p+i fp+i

(fp+i.p+i      rp+1\.

fp.p+l Tp   I

consequently, if

»Vn.p+i ~" | cp,P+i — Cp+i,p+i |

rP,p+i

then

/%+i.p+i

\ rp.P+i /

l/P+i — Cp | r/rp+i,p+i

fp+i        LA rP,p+i

/,      yp+i\

rP I

)+(>--)]

tlíusst -i)-i(t
J   \   *"p,P+l / «3   \

Now rp/rp+i— 1 ̂  1 — rp+i/rP = 0; moreover, from (i) of Lemma 5 and

from the hypothesis that cp = cp+i, it follows that rp+i,P+i/rp>p+i

èfp/»p+i. Hence eP — l^(rp/rp+i—1)/3. This completes the proof.

3. Proof of the theorem. Let F denote a continued fraction

fi + ai_

b{ - ai

bi-

where ap' ^0, p = l, 2, 3, • • • . Let/ denote the sequence of approxi-

mants of F.

Suppose first that there exist a continued fraction (1.1), which is

equivalent to F, and a sequence 5 such that conditions (i), (ii), and

(iii) of the theorem hold. It follows from Lemma 2 (with gp = l for

p = 1, 2, 3, • • • ) that the sequence of approximants of F is bounded.

For each positive integer p, let t~1(Rp) be the region defined by the

inequality sp|m| ^|m — l|. By Lemma 1, cp+i,p+i = l/(l— sP+i) and

rp+i,p+i=sp+i/(l—sP+i); and  from  the proof of  Lemma  2,  cPlP+i
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= bp+i — aP+i and rp,p+i=Sp|(ip+i|. Hence

.„  ... rp+i,p+i — | Cp,p+i — Cp+i,p+i|
(3.1) ep =-—-

rp,p+i

By hypothesis, 2"_i (ep— 1) diverges; by Lemma 5,2"-i (rp/rp+i — 1)
diverges; and by Lemma 3, rp-*Q as p—*<x>. Hence the common part

of the regions Rp is a point, c, and /P—>c as p—* oo ; that is to say, F

converges.

Suppose that / is bounded and that F converges. Let c denote the

number such that fv—*c as p—> oo. For each positive integer p, let

cp = c, let rp = 3 l.u.b.3àP \fg — c\, and let Rp denote the region defined

by \u — c\ ^rp. Then REB/. Let ti(u) =fi+a{/(b{ — u) and
TpVp+i(M) =a'p+i/(b'p+1 — u) lor p = l, 2, 3, • • • , and let s and q denote

sequences such that (cf. Lemma 1) ^(Rp) is defined by sp\u\

^\u — qp[. Let ai = a{/qi, and for each positive integer p, let bp

= bp/qp and ap+i=a'p+l/qpqp+i. We have now found a continued

fraction (1.1) which is equivalent to F and a sequence 5 such that

(cf. Lemma 2) the conditions (i) and (ii) of the theorem hold and

eP^l lorp = l, 2, 3, ■ ■ ■ . Moreover, tp^Rp) is defined by the inequal-

ity sp| u| ^ | m — 11, so that (3.1) holds. By hypothesis and by construc-

tion, rp—M) as £—>-co, so that (Lemma 3) 2"-i (rp/rp+*-~ 1) diverges.

From (3.1) and Lemma 6, it follows that ^r°=i (eJ>-i) diverges. This

completes the proof.
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