
CONVERGENCE OF A METHOD OF SOLVING
LINEAR PROBLEMS1

w. karush

1. Introduction. We are concerned with the solution of two prob-

lems associated with a linear operator A. First, the characteristic

value problem

(1) Ay = Ky

lor the determination of the characteristic values X and the character-

istic vectors y; second, the linear equation problem

(2) (A - KI)x = b, b^O,

for the determination of x, given the number X and the vector b (I is

the identity operator). Lanczos [3]2 has described an interesting

iterative method for the solution of these problems which appears to

be effective for numerical calculation. It is our purpose to consider

the convergence and rate of convergence of the method, in the Hu-

bert space sense, for a bounded self-adjoint operator.

The procedure for obtaining the solution may be described as

follows. Let b^O be a given initial vector, arbitrary for problem (1),

equal to the right side of (2) for problem (2). Let

(3) 3C< = (fi, Ab, ■ ■ ■ ,A^lb),

i.e., the linear subspace spanned by the indicated vectors. Let 3C be

the invariant subspace which is the closure of the linear subspace

spanned by all non-negative powers A % ; symbolically

(4) 3C= (b,Ab, ■ ■ ■ ,A'b, ■ ■ ■).

Let Wi he the projection operator onto 3C<. Then to solve (1) and (2)

we replace the operator A by the operator ViA on 3C,-, solve the cor-

responding finite-dimensional problem, and allow i to approach ».

That is, (1) and (2) are approximated respectively by

(5) TiAy = Ky on 3C,-

and

(6) (ttíA — KI)x = b on 3C¿.
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We shall establish the convergence of the solutions of (5) to a solu-

tion of (1) for isolated characteristic values; the convergence

to the characteristic value is monotonie. This result applies only to

solutions of (1) lying in 3C, of course. To prove the convergence of

the solutions of (6) to the solution of (2) we make the assumption

that A is completely continuous. Under this latter hypothesis we

are also able to show that the rate of convergence to the solution

for each of the problems (1) and (2) is faster than any geometric

progression.

One of the advantages of solving (1) and (2) by means of (5) and

(6) is the simple algebraic form that the successive approximations

take. For full details, as well as numerical examples, see the paper of

Lanczos where self-adjointness is not necessarily assumed. Our de-

scription of the method in the preceding paragraph is somewhat

different from Lanczos' formulation. The equivalence of the two

procedures is shown in the final section of this paper.

Some additional remarks are in order. First, the present method

should be contrasted with a procedure studied by the author in an

earlier paper [2] in which only the characteristic value problem (1)

was considered. In that paper a sequence of subspaces oí fixed finite

dimension was employed, each subspace depending upon the previous

one, instead of the sequence of subspaces ¡JC,- of increasing dimension

described in (3). Further, the method of [2] is not immediately ap-

plicable to the linear equation problem (2). The second remark is

that the present paper is related to the work of Rellich [4] in that we

deal with successive approximations ttíA to A. However it appears

that the direct use here of his results would lead to no essential

simplification. Finally, attention should be drawn to a paper of

R. C. T. Smith [5] concerned with the calculation of characteristic

values of infinite matrices. The matrix is approximated by its finite

segments, that is, (1) is approximated by equation (5) with 3C¿

= (ci, e2, ■ • ■ , ei), e¡ being the sequence with 1 in the jth place and

zeros elsewhere. Explicit error estimates for the characteristic values

are given.

2. Assumptions. In this section we shall specify the notation and

assumptions which are to remain in force in the remainder of the

paper.

We are given a bounded self-adjoint linear operator iona (not

necessarily separable) real Hubert space 1\ of infinite dimension.

With a given vector b we form the subspaces (3) and (4). Since our

method of solution never leads us out of the invariant closed (sep-

arable) space 3C, we henceforth understand by A an operator on 3C
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(i.e., from 3C to 3C), unless otherwise stated. Thus we obtain only

the characteristic solutions of (1) which belong to 3C; further solu-

tions would be obtained by varying b. The hypotheses we shall

make on A will be hypotheses holding for A as on 3C; this is only a

matter of convenience since it would be a simple matter to impose

the conditions on A as on 'R. and add a mild condition on b to guaran-

tee the satisfaction of the hypotheses of the theorems.

We understand always by WiA an operator on the subspace 3C¿. As

such WiA is self-adjoint; for, with x and y in 3C,-, (wíAx, y) = (Ax, y)

= (x, Ay) = (x, iTiAy).

We shall make use of the Rayleigh quotient, which is defined by

(x, Ax)
(7) /.(*)- ~~r> *^o-

(x, x)

For x in 3Cj we have (x, inAx)/(x, x) = (x, Ax)/(x, x), so that the

Rayleigh quotient for the finite-dimensional operator ttíA has the

form (7) independent of i, provided x is restricted to 3C¿. As is well

known the characteristic vectors of (5) are the minimax points for

the function p on 3C¿ [l, pp. 27-29]. Certain other standard proper-

ties of p will be taken as known.

Finally we assume as a matter of convenience that

dimension (3C¿) = i.

That is, we assume that 3C is not finite-dimensional. If the contrary

held, then, for some k, 3C = 3C* and the method would terminate with

an exact solution at the ¿th step.

3. The characteristic value problem. It is easy to show that the

vector b has a non-null projection on every characteristic manifold

of A, and that every such manifold has dimension one, i.e., every

characteristic number is simple [2]. A similar statement holds for

the operator ttíA, whose i characteristic values we denote by

(8) Xi; > K2i > • • •  > Xit,

and whose corresponding characteristic vectors we denote by

yu, ya, • ■ ■ , yu

and which are taken to satisfy the conditions

(9) |y*|-i.   (b,ya)>o,        y-i, 2, •••,*.

For the next theorem we shall require the following assumption on

the (real) spectrum S of A.

(10) S is the union of disjoint sets Si, S2 where Si consists of a
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finite number of isolated characteristic values

Xi > X2 > • ■ • > Am, m=\,

and S 2 is a closed set lying below X«.

This partitioning may be possible in many ways. The character-

istic vectors of A corresponding to the values in Si we denote by

vi, yt, • - • , ym

where

(11) 1*1 = 1,    (b,yi)>0, j=l,2,---,m.

Theorem 1. Let the spectrum of A satisfy condition (10). For each

j, j = i, 2, • • ■ , m, determine the infinite sequence {ya} as above.

Then {Xy,} is a monotonie increasing sequence, and

lim yji = yjt lim X,-¿ = X,-, j = í, 2, ■ ■ ■ , m.
i—» oo <—* CO

An entirely analogous result holds if the finite set S i lies below,

instead of above, the remainder S 2 of the spectrum.

To make the proof we suppose first that the conclusion has been

established for j = i, 2, • • • , k— 1, 2¿k^m; we show its validity

for j = k. Observe that X*,=/x(y*¿) is a nondecreasing sequence, as

follows from the minimax principle just referred to for character-

istic values in finite-dimensional spaces. Further, the sequence is

bounded by Xi, since

Xi = max p(x~), x 9a 0, x E 3C.

Let X be the limit of the sequence; we wish to show that X =X*.

Since ykESC, it follows from the definition of 3C that there is a

sequence of vectors xit XíESC-í, such that x—*yk as t—»00. We may

write

k-l

Xi = J2 ßaya + ri7     n E 3C<, (r<, y¡i) = 0.

Take the inner product of each side of this equation with yki and

allow i to tend to 00. Then using the assumed limit relations and

the orthogonality between characteristic vectors we find that /3j»—>0.

Thus r< tends to yk, since *< does. Hence p(ri)—>ß(yk) =X*. But

p(ri) ^p(yki) since yki maximizes p(x) for x£3C,- and x orthogonal to

ya, j = l, 2, ■ • • , k-l. Thus

X*áX.
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To prove the reverse inequality we write

k

(12) yu = X aaVi + Zi,       Zi E 3C, (z¡, y,) = 0.
í=i

From (9) and (11)

(i3) i = E4 + |z.f.
)'=1

We also note the relation

(14) Kk - p(zí) è 7 > 0,

which follows from the fact that the least upper bound of the comple-

ment in S of the finite set (Xi, X2, • • • , X*) is the maximum of p(x)

for xE3C, (x, y,) =0, j = l, 2, • • • , k. We take the inner product of

each side of (12) with (y„¿), « = 1, 2, • • • , k — l, and find that ani—»0

as *'—►». From (12) and the definition (7) of p(x) we find that

4        ».,        ,2

m(vh)  =  X) Oiji^hl) + /i(Zi) I z<
1=1

that is,

*     2 2

(15) Km = 2 «í¿Xí + m(z¿) I S< I
1=1

Substituting for |z,|2 from (13) we obtain

*     2

tt~ X« = X) <*i<(X< - ß(zi)) + p(zí)
(16) i=i

S ¿u(z¿) < Xi.

Thus

* á x»,

which completes the proof of X =X4.

To show the convergence of the vectors write (16) in the form

2

au
1 / *_1 \

. = 1 _|-__l (xw — \k) — ]£ aji(Kj — p(zi)) ).
X* — p(Zi) \ ,=1 /

Taking the limit and using (14) we obtain a|,—>1. From (13), z¿—>0.

The sequence a¡K cannot have the limit point — 1. If it did, a subse-

quence (denoted by the same subscript i) would converge to — 1.

The corresponding subsequence yu by (12) would converge to —yk,
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hence (b, y*,-)—» — (&, yk) <0 by (11), contrary to (9). Thus the original

sequence aki tends to 1 and, by (12), v*,—+y*.

The proof will be complete if we justify the conclusion of the theo-

rem for .7 = 1. This justification is a duplication of the above proof

with obvious simplifications. We omit the details.

4. Rate of convergence. In order to prove the convergence theorem

for the solution of problem (2) we shall require some information on

the rate of the convergence established in Theorem 1. This informa-

tion is of independent interest as well. We now suppose that A is

completely continuous, although the results of this section could be

formulated somewhat more generally. We shall show that the con-

vergence to the solution of problem (1) is geometric with arbitrarily

small ratio.

With A completely continuous the spectrum of A (omitting 0) con-

sists of two sequences of characteristics values

Xi > Xj> •• • , X, > 0,

Xi < x2'< • ■ • , X ■ < 0,

not both of which are finite or vacuous. Either infinite sequence has

the limit 0. In the sequel we shall speak as if both sequences are in-

finite. If one is finite or vacuous, then certain obvious notational

changes should be made. Every characteristic value is simple and we

denote corresponding characteristic vectors by

yii yt, ' ' • ,

y'i, y-2, ■ • ■ ,

normalized in length and direction by (11).

For problem (5) it will be convenient to denote the characteristic

values (8) arranged in reverse order by

Xk < Xî» < • • • < X,¿,

with a similar notation for characteristic vectors. By Theorem 1 and

the remark following it we have, for every positive integer j,

y a —> y¡, a,» —* a./, y a —* y¡, a,< —» a,-.

Theorem 2. Suppose that A is completely continuous. Let 8 be an

arbitrary number with 0<S<1. Then for each characteristic number

X* (Xjf ) there is a constant K (K') independent of i such that

| \k - \ki | á K8< (\\'k- X« | < K'ô1).
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We give the proof for a positive value X* ; for a negative value we

need only notice that the proof is entirely analogous or alternatively

we may transform to the operator —A.

We choose positive integers m, m' so that

(\i\ //Xm+1      ' *"'+1  \  , ,
(17) maxi-1    -—1 < 8.

\ Xi \k     J

We write

m m'

(18) b = J) ajy¡ + £ a'jy'j + z
í=i ,=i

with z orthogonal to the subspace

-C = (yi, • • • i y«i yi» • • • i y™)-
By (11) we have

(19) aj > 0,        a'j > 0.

Also

(20) b = XI otaya + z¿>      *< G 3C«, fe» y*) = 0.

Let g(X) be an arbitrary polynomial of degree i—I. From (18)

m m'

(21) sí = ç(4)6 = Y, ajq(\j)yj + X) oc'jq(\'i)y'j + q(A)z,   x{ E 3b.
Í-1 3=1

Now   q(A)b=q(wiA)b.   Hence,   from   (20),   x{= X*=î   a3Íg(ir,v4)yyi

-f-g(7Ti^4)3i, so that

(22) s,- = X) «j.?(X/i)yii + 2<, 2< G 3Ci, (zu y¡i) = 0.
i=i

We choose

m m' k—1

q(\) = X'   II    (X - Xi)II (X - X,') II (X - X«),
Í— l,ir*k i=l 3=1

s = i — w — m' — k+ I.

For * sufficiently large q is well-defined and qÇK^^O. By (22), we

have Xi=Zi. Hence

(23) p(xi) = \ki,
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since X*í = max p(x) lor #£36,-, X5¿0 orthogonal to ya,j = l, 2, • • • ,

k-l. By (21)

Thus

Xi = akq(Kk)yk + r„        n = q(A)z.

akq (Kk)Kk + p(r¡) \ r< \
p(Xi) = -1—¡->

a2kq2(Kk) + \n\2

(24) X* — p(Xi)  = -1-r— á Ai- •
«y(x*) + N2       ?2(x*)

To estimate the last ratio we use the fact that z is orthogonal to

J\ From the spectral resolution of A,

q(K)dE(K)z =      f     q(K)dE(K)
S J Xm'4-1

Hence

q\K)d\E(K)z\2 Ik q\K)\z\2,        Xl
Xm'+>

áXgX,m'+l =  A  â   Am+i

Utilizing the definition of q(X) and (17) we obtain from the preceding

inequality, for i sufficiently large,

q2(K) =K*Q'=
q'ÇKk) q2(Kk)

Combining this with (24) yields

X* - p(xi) é KS*.

Finally, from (23), Kk—\kiûK.k—p(xi). The conclusion of the theorem

now follows from the fact that X*,- approaches X* monotonically from

below.

For the convergence of the characteristic vectors a similar estimate

holds. We state the result without proof, for we shall not require it in

the sequel. The proof is made by re-doing the proof of Theorem 1

with the added result in Theorem 2.

Theorem 3. Under the hypotheses of Theorem 2 there is for each

characteristic vector yk (yi ) a, constant K (K') independent of i such

that

Jk -yulgKS* ( | y'k - yu | g K'i%
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5. The linear equation problem. We turn now to the solution of

problem (2), where the given number X is assumed to be in the re-

solvent set of A and the given vector b is, of course, to be used in the

construction of the spaces (3) and (4). Then a unique solution

(25) xo = (A - \I)~lb

in 3C exists. As an aside we remark that if A is regarded as an oper-

ator on the original space 3^., then the assumption that X is in the

resolvent set of A as on i^. implies that X is in the resolvent set of A

as on 3C. But the reverse implication does not hold; for example, b

may be orthogonal to a particular characteristic manifold of A as on

ÏL Thus, imposing our condition on A as on 3C represents a weaker

assumption.

As in the preceding section we suppose that A is completely con-

tinuous, for we shall require the results of Theorem 2. Since X is in

the resolvent set of A, we have

\?¿ 0

and by Theorem 1 it follows that for i sufficiently large the number X

is not characteristic for ir^4. Thus equation (5) has a unique solution

Xi, i.e.,

(26) n(A - XI) Xi = b, XiE 3b.

We shall establish the convergence of x, to the solution (25) of equa-

tion (2), and estimate the rate of convergence.

Let
t

fc(X) = X4 + -KiX*-1 + • • • + T* = Il (X - X«)
3-1

be the characteristic polynomial of ttíA (for simplicity we do not

indicate the dependence of the coefficients y on the index i). We have

0 = (¡>i(iriA)b = iriAib+yiAi-1b+ • ■ ■ +yti = <pi(A)b- (A'b-inA'b).
Thus <i>i(A)b =• A*b—WiA'b, so that if we let

(27) fa = ¿>i(A)b,

then £,-G3Ci+i and tt,£í=0. From (27)

(28) A*i - fa - yiA'^b- yib.

If we represent the solution Xi in the form

(29) Xi = ßob + ßiAb + • - • + ßi-iA^b,

then Lanczos [3 ] has given the solution
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(30) ft - -

ft- -

1 X +7i
ßi—l  =   —  "-> ßi—2  =-1

<t>i(K) <Pi(K)

X-2 + 7iXi~3 + • • • + 7¿-2

<Pi(K)

X-1 + 7iX*-2 + • • • + 7,-

*i(X)

To verify this, we substitute (29) into b — (A—\I)Xi, using (30) for

the values of ß and replacing A {b by the expression on the right of

(28). The result is

b- (A- KI)xí = PUi(K).

Since 7r,-£i = 0, this equation tells us that x{ is the solution of (26);

further

<pi(A)b
(31) n m b - (A - KI)xí = —-— •

&(X)

We now state the convergence theorem.

Theorem 4. Suppose that A is completely continuous. Let X^O be

noncharacteristic for A, and let x0 be the unique solution in KC of equa-

tion (2). Let 6 be an arbitrary number with 0<5<1. Then for suffi-

ciently large i equation (6) has a unique solution Xi in 3C¿, and there

exists a constant K independent of i such that

(32) \xi- xo\ú Ko\

In particular, lim,-..,*, Xi=x0.

We have already remarked that there exists a unique xt for suffi-

ciently large i. To establish (32) we first choose a>0 so that

(33) a < | X |    and   -¡—¡-^-< 5.
| X | — a

Using the notation of the preceding section choose the indices m and

m' so that Xm+i and X£,'+i lie in the closed interval [ — a, a]. We ex-

press b in the form (18) and consider the remainder r, of (31). We

have

<Pi(A)b        «   <pi(K¡) *  <bi(K'i)   ,  ,     4>i(A)z
(34) n = - =   }_, -atyj + ¿. -a ¿y H-

<Pi(K)        U  fc(X) ti  fc(X) <t>i(K)
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0- = 2-1 min [ X - ? I > 0,        M = 2 max | v \ > 0     for v E S.

Choose 81, 0<8i<l, so that

¿iAf/ff < 5.

We now consider the coefficient <f>i(Kj)/<f>iQi) in (34). Apply Theorem 2

to \j for the value 8X to obtain an appropriate constant Ki. Then for

sufficiently large i we obtain, by writing <p{ in factored form,

*i(X,-)

*.-(X)
SX,- X,, I

M'-1      Ki
-g —

o-'      ' M &)'*
K8{

Similarly, we obtain the same inequality for X/.

Finally we treat the last term on the right of (34). We have

<t>i(A)z

*<(X)

1     r"
- I     <t>i(v
4>i(\)   J-a       V

)dE(v)z
<Pi(\)

*<(X)
z\,      X in [ — a, a].

For i sufficiently large all roots X*,-, k=m+í, m + 2, ■ ■ • , and

X«, k=m' + l, m'+2, • • • , lie in [ — a, a]. Hence, writing cbiQi) in

factored form, we find

i(X)|      /M\m+m'{      2a     \

¡001 '    \T/        Vlxl -a)*.-(x)

¿— ( m+ m' )

< K8'

by (33). From the preceding inequalities and equation (34),

I f< I S ^5¡.

From (31) Xi = B(b—ri)=Xo — Bri where B = (A— X7)-1 is a

bounded operator. Thus

I »i - xo I ̂  [ Bn I =: Xá*

for an appropriate constant K. This completes the proof.

6. Equivalence with procedure of Lanczos. In order to show that

our method is identical with that of Lanczos we shall reproduce some

of his formulas here (see [3, §§VII and X]). His notation has been

modified slightly to conform with ours; in particular, his ju = l/X be-

comes our X. Beginning with the initial vector b=bo, constants a¡, ßj,

polynomials pj(K), and vectors bj are defined recursively by

(35)
a¡ = p(bj),      ßj =  I bj+i\2/ I bj\2,

Po(\) m 1, pi(\) = \-a0, pi+i(\) = (X - aUPjfr) - ß^p^iQi),

bj = pj(A)b0,       bj E 3Cj+i.
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These quantities are defined in the order b¡, a¡, ft_i, pj+i(X), bj+i.

Let us show first that the polynomial piÇK) is the characteristic poly-

nomial of the operator ir,v4 on 3C;. Lanczos shows (pp. 266-267) that

bi is that vector of the form A'b—z, zE3C,-, which has minimum

length. Clearly this vector must be given by

bi = A'bo — iTiA'bo.

Now let<£,(X) be the characteristic function of 7r,v4. Then 0 =<pi(wiA)bo

= —Aibo+TTiAibo+<pi(A)bo= —bi+<pi(A)bo- Hence, by the last equa-

tion (35), 4>i(A)bo = pi(A)bo, so that <pi(K) = pi(K), since 3C¿ has di-

mension i. Thus Lanczos' approximation to the characteristic num-

bers of A, namely the roots of pi(X), is identical with our approxi-

mation.

His approximation to the jth characteristic vector (see his equation

(107)) is

(36) y = I- TT-jT bk'
*-o  | ok |

where Xy is the jth root of pi(K) =0. We need to verify that this vector

is the jth characteristic vector of itíA, i.e., that

(37) iTiAy = K,yj.

To this end we rewrite the recursion formula for the polynomials

pÇK) in the form

XMX) = Pk+i(K) + akpk(K) + ßk-ipk-i(K), p-i(K) = 0.

Replacing X by A and operating on bo leads to

Abo = bi + aobo,

(38) Abk = bk+i + akbk + ßk-fik-i, k = 1, 2, • • • , i — 2,

inAbi_i = ai-ibi-i + ßi-2bi_2.

Substituting the value of y in (36) into the left side of (37) and re-

ducing the resulting expression to a linear combination of the bk's by

means of (38) leads to the right side of (37). The required verification

is thereby accomplished.

Finally, we need to show that his approximation to the solution of

equation (2) is the solution of equation (6). With appropriate nota-

tional changes his approximation is (see his equation (102))

(39) x =-—- Z pi-k-i(K)bk
pi(K)   s=0
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where

Po(K) m 1,        ^(X) = X - a,_i,

pk(K) = (X - ai-k)pk-i(K) - ßi-kpk-2(K).

Again, direct substitution of the value of x in (39) into the left side

of (6) and use of (38) and the recursion relation for the polynomials

^(X) leads to the right side of (6), establishing the desired result.
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