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1. Introduction. It is well known that the root of an algebraic

equation is a continuous multiple-valued function of its coefficients

[5, p. 3]. However, it is not necessarily true that a root can be given

by a continuous single-valued function. A complete solution of this

problem has long been known in the case where the coefficients are

themselves polynomials in a complex variable [3, chap. V]. For most

purposes the concept of the Riemann surface enables one to bypass

the problem. However, in the study of the ideal structure of rings

of continuous functions, the general problem must be met directly.

This paper is confined to an investigation of the continuity of the

real roots of an algebraic equation; the results obtained are used to

establish a theorem stated, but not correctly proved, by Hewitt [2,

Theorem 42] on rings of real-valued continuous functions.

2. Multiple-valued functions. Definition. A multiple-valued func-

tion J from a space X to a space Y will be called a continuous

«-valued function on X to Y and will be symbolized by J: X—>-BF

provided

(i) to each xQ_X, J assigns mx values ylt • • • , y„x, in Y, with asso-

ciated multiplicities &,- such that J^?£, ki = n.

(ii) to each neighborhood N(y¿) in Y there corresponds a neigh-

borhood U(x) in X such that for z in U(x) there are k¡ values of

J(z) in N(yî), counting multiplicities. (Note—k¿ depends on x.)

All spaces considered will be Hausdorff. Unless otherwise specified,

in any mention of the number of values of J(x) it is supposed that

multiplicities are counted.

Lemma 1. For any J: X^>nR, where R is the real line, the least value

f(x) of J(x) is a continuous function.

Proof. For any xoÇ.X and any e>0, there is a neighborhood U of

x0 such that for zÇ^U, all n values of J(z) are greater than f(x0) — e.

There is another neighborhood V of Xt¡ in which at least one value of

J(z) is less than f(xB)+e. Hence if zGUCW, then f(x0)-<<f(z)

<f(x0)+e; so/ is continuous at x0.

Lemma 2. Any J: X^*nR can be decomposed into n continuous

single-valued functions.
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The proof is by finite induction.

Lemma 3. // J: X—>"F has always exactly m values in an open or

closed subspace W of Y, then the restriction of the values of J(x) to W

defines an J':X-+mW.

Proof. For each x<¡(E.X, let N, N* be disjoint open sets of Y con-

taining respectively the m values of J'(xo) and the remaining n — tn

values of J(x0). If W is open, N(~\W is open in F, so a discontinuity

of J' would be a discontinuity of J.
If PF is closed, choose a neighborhood U of x such that if z£i7,

then n — m values of J(z) are in N*(~\(Y—W). Hence there is a

neighborhood V oí x such that if zÇiUC\V, the only values of J(z)

in N are also in W. It easily follows that J':X-*mW.

3. Real roots of polynomials. Let P(a, w) = P(a<>, • • • , aB-i; w)

= wn+ 2>o öjW' be a polynomial with complex coefficients. As was

noted above, the root r(a) of P(a, w)=0 is a continuous w-valued

function of a; that is, r:Kn-+nK. If <f>(a), £(a) are the real and

imaginary parts of r(a), clearly <f>:Kn-^nR and l-:Kn—>nR. By Lemma

2, either (but not necessarily both together) can be decomposed into n

continuous single-valued functions, <¡>¡ or £,-. Now if the coefficients

are given by a continuous function a:X—*Kn, the <f>¡ or £y are con-

tinuous on the space X.

Theorem 1. If P(a(x), w)=P(x, w)=0 has a real root for each

xÇ£X, then (i) there is an open set U on which a real root is given by a

continuous function ru; (ii) if the number of real roots is constant over

X, we may take U = X.

Proof. We begin with a lemma.

Lemma 4. Each set B¡= \xÇlX\ P(x, w)=0 has at least j real roots]

is the set of zeros of a continuous real function, for j=\, 2, ■ • • , n.

Having decomposed £ into continuous functions £i, • • • , £„, we

may write B¡= \x£.X\ H«,,...,<,> 2Zi-i £?*(#) =0], where the product

is extended over all choices of j different indices.

(i) Noting that Bi = X, let jo be the greatest j for which Bj has a

nonvoid interior V. Then U= V—5,-0+i (letting Bn+i be empty) is a

nonvoid open set. By Lemma 3, the real root is a continuous jo- valued

function on U, and by Lemma 1 the least real root is a continuous

function on U, which we may take as ru-

(ii) The above construction yields U= V = X in the special case.

The following example of a polynomial whose real root is necessarily



1953] REAL ROOTS OF AN ALGEBRAIC EQUATION 433

discontinuous on the Cantor perfect set suggests that the result above

cannot be substantially improved.

Example. Let the real parts of the roots of a cubic be given by

4>k = k, k = \,2, 3. Define the imaginary parts £* as follows. In the real

interval [0, l], let h(x) be the distance of x from the ternary Cantor

set C. This set is obtained by excluding successively intervals of

lengths 1/3". Let Im be the union of the removed intervals of length

l/3m. Define £* = 0 identically on C; on Im let £* = 0, S(x), — S(x),

according as m — k=0,1, 2 (mod 3). The polynomial IH_i(w—<pk — ii-k)

has continuous coefficients, but obviously in any neighborhood of

any point of C there are excluded intervals of lengths 1/3" and

l/3n+1. Thus r(a), however chosen, is discontinuous at every point

of C.

4. Rings of real-valued continuous functions. In [2], Hewitt con-

sidered the ring C(X, R) of all real-valued continuous functions

on a completely regular space X. He stated [2, Theorem 42] that

for any maximal ideal M of C(X, R), Cm = C(X, R)/M is a real

closed field. While he established that Cm is ordered and that every

positive element has a square root, his proof that every polynomial

of odd degree has a root in Cm depends on the assumption that the

least real root of a real polynomial of odd degree is a continuous

function of its coefficients. In his review [l] of the paper, Dieudonné

observed the error.1 Nevertheless the theorem is true for normal

spaces, as will be shown.

Theorem 2. If X is normal, Cm is a real closed field.

Proof. By the above, we need only show that every polynomial

P(x, w)=w2n+1+Y%L0 ak(x)wk, ake.C(X, R), has a root in CM. If

feC(X, R), let Z(f) = [xeX\f(x)=0], Z(M)=[Z(f)\feM]. Con-
sider the sets B¡ defined as in Lemma 4. Since B\ = X, there is a

greatest jo such that B¡t meets all elements of Z(M); and by [2,

Theorem 36] there is an fSM such that Z(f)CBit-BJvH. By

Theorem 1, (ii), there is a continuous root function rz<j) on Z(f). By

Tietze's extension theorem [4, p. 28], rZtj) has an extension r con-

tinuous on X; so P(x, r) =0 (mod M).

The authors do not know if Theorem 2 holds for non-normal spaces.

Added in proof. In a paper currently being prepared by L. Gill-

man and M. Henriksen for submission to Trans. Amer. Math. Soc,

examples are given of completely regular non-normal spaces in which

1 Professor W. F. Eberlein has communicated to the senior author an example of a

real polynomial whose real root cannot be chosen continuously.
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every Z(f) is open and closed (see also Bull. Amer. Math. Soc. Ab-

stract 59-4-446). It is easily seen that the conclusion of Theorem 2

holds for such spaces.
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