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If a matrix .4 transforms a sequence {z„} into the sequence {<rn},

i.e., if crn= X^t'-i an.kZk, and if cr„—»z as w—»°o whenever zn—>z, A is

said to be regular. The well known necessary and sufficient conditions

for A to be regular are1

(a) X^-i |g»,*| <M for every positive integer w>Wo,

(b) limn^oo an,k = 0 for every fixed fe,

(c) XXi a»j»«A»—»1 as w-»°o.
It is known2 that if a regular matrix sums a bounded divergent se-

quence, then it also sums some unbounded sequence. The converse

is, however, false.3 It is consequently of interest to find sufficient

conditions for a regular matrix to sum a bounded divergent sequence.

Many authors have considered summability of bounded sequences.4

R. P. Agnew has given a simple sufficient condition that a regular

matrix shall sum a bounded divergent sequence. He has proved5

that if A is a regular matrix such that lim„,t,M On,t = 0, then some di-

vergent sequences of O's and 1's are summable-^4. There are, how-

ever, very many simple regular matrices which do not satisfy this

condition, but which are known to sum a bounded divergent se-

quence. For example, the matrix A obtained by replacing every third

row of the Cesàro matrix (C, 1) by the corresponding row of the unit

matrix, given by

1 1
a3n-2.k =-    (k ^ 3n — 2),        a3n-i,t =-     (k ^ 3n — 1),

3n — 2 3n — 1

a3n,k = Ssn.t,        an,k = 0    (k > n) (n, k = 1, 2, • • • ),

sums the sequence {0, 2, 1, 0, 2, 1, 0, • • • }  to the limit 1. This

matrix does, however, satisfy the conditions which will be given in

Theorem II.

I first show that I need consider only normal matrices, i.e., lower-
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1 See R. G. Cooke [l, pp. 64-65].
J Stated without proof by S. Mazur and W. Orlicz [2]; a proof is given by V. M.

Darevsky [3]. See also J. D. Hill [4]; A. Wilansky [5J; K. Zeller [ó].
« See R. G. Cooke [l, p. 178, Examples 7, no. 10].

4 See, e.g., G. G. Lorentz [7; 8]; R. P. Agnew [9]; A. Wilansky [lO; 11 J.
6 R. P. Agnew [12, pp. 128-132]; this is a special case of G. G. Lorentz [7, p. 181,

Theorem 8 and footnote].

671



672 A. MARY TROPPER [October

semi-matrices with no zero element in the leading diagonal. A normal

matrix has a unique right-hand reciprocal which is also normal, and

which is also a left-hand reciprocal.6 If a matrix B is such that ||5||

= supn 2~Lk \°n.k\ = », then, by a method now classical, we can con-

struct a null sequence whose 5-transform is unbounded. It is not, in

general, possible to construct a null sequence whose 5-transform is

bounded and divergent. This can be done, however, if B is normal

and its columns form null sequences. This is the main result of this

paper and its interest lies in its sufficiency that B~l=A shall sum a

bounded divergent sequence.

The following theorem is due to A. Brudno.7 Brudno's proof, how-

ever, is somewhat complicated, and I give here a simpler proof.

Theorem I. If A is a general isquare) regular matrix, there exists a

normal regular matrix A*, such that A and A* are mutually consistent*

for bounded sequences.

Proof. Let fe„} be any null sequence with e„>0 for each ». Since

A is regular, by (a) we can choose a monotonie increasing sequence

of positive integers {pn} (« = 1, 2, • • • ) such that

DO

X) I an,k | < «n for every ».

Let the matrix A * be given by

an,h = ai,k (1 g k < n < pi),

* (fll,n (öl,n  7*  0)1

a».»-  <., . Jt in<px),
U/M (ffl.» = 0)1

an.h = aUk (ii I » < pi+x, l â 1, 1 ^ k < n),

* í«í,n («i.n 7"* 0)1

«n,n=    < \ ipl a  n < Pí+i, fe 1),
(I/«        («i.« = 0);

*
an,k = 0 (A > «).

Leta„ = Aizn) = 2~lt-x an,kzk, pn=A*izn) = JXi ß**z*- If pt^n<pt+i,

ai—pn= 2~2ï-n+x ai,kZk + iai,n—a*n)zn. Hence, if {zn} isa bounded se-

quence for which |z„| ^ Af for every »,

•R. G. Cooke [l, pp. 19,22].
7 A. Brudno [13].

8 I.e., A* sums, to the same limit, every bounded sequence which is summabIe-,,4

and vice versa.
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°° M
\ai-pn\uM   Z    |«l.»|+ —

k~Pi+i n

<mL¡-\-J->0 as/ ->oo,

since w and / tend to oo together.

Thus A(zn) and A*(zn) either both converge to the same limit, or

neither converges, and A* is normal.

I now prove the main theorems.

Theorem II. In order that the regular normal matrix A shall sum a

bounded divergent sequence it is sufficient that its unique two-sided re-

ciprocal B shall not be regular, and that all the columns of B shall form

bounded sequences.

Theorem III. In order that the regular normal matrix A shall sum a

bounded divergent sequence it is sufficient that

(a) its unique reciprocal B shall not be regular, and

(b) there exists a normal matrix Q with ||(?|| < °°, whose columns are

all null sequences, such that the matrix C = BQ has bounded columns and

Bell—.
Proof of Theorem III. If A(zn) =o-„, then

B(<rn) = B[A(zn)] = (BA)(zn) = (zn),

the alteration in the order of summation being justified, since only

finite sums are involved.

If B is regular, {z„} converges whenever {o-n} converges, so that A

sums only convergent sequences. If B is not regular, there exists a

convergent sequence {o-n} such that {z„} is divergent. Thus, in order

that A shall be stronger than convergence it is necessary and suffi-

cient that B shall not be regular.

Since B and Q are normal, C — BQ is also normal, and hence

AC = A(BQ) = (AB)Q = Q,

so that, assuming condition (b), A transforms each column of C into

a null sequence. Since A is regular, it follows that each column of

C is either a divergent or a null sequence. If at least one column of C

is divergent, the result is proved. There remains to be considered only

the case in which all the columns of C form null sequences. Thus

cn,k—>0 as w—»oo for every fixed k, and if Mn= XX i I C*A , the se-

quence {Mn) is unbounded, by hypothesis, and therefore has a sub-

sequence which tends to infinity.
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If Z = re*, let sgn Z = <r<,(Z?i0), sgn 0=0.

Choose a positive integer »i such that Mn¡> Mn for all » <»i. Put

x* =
sgn (c,,*)

M.
ik g ni).

n\

If C(*„) =y„,

ni J m

yni = 2 cnilix* = —— 2~11 £»,,* I = !•
t-i Afn,  *-l

Let €>0 be fixed and arbitrarily small. We can choose »2>»i such

that

and

Put

Then

»i i

£k.*l<f«t-i ¿

M», > M„

Xjfe =  —

sgn (ç,,*)

for every » à »2

for every » < w2.

(»i < A ^ «2).

Ä Ä    C„* sgn (cn,.t)

*«i *=ni+i MB

1     ni

2 c„2,t sgn (ç,.*)
Mni t=i

We now choose n$ > n2 such that

»2

J n2

TT-       Z     \Cn,.k\
Mn       *=-ni+l

£ |c».*l <-«
Jfc=nj-(-l

and

Put

Af „, > Af „

x* =
sgn jcn,,k)

Mn,

for every » ja »3,

for every » < »3.

(»2 < A i£ M3).

Then
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J        ni J nj

yn, J2 cn,,k sgn (c„„t)-——     2~1   Cn,.k sgn (ç«,,*)
Mni   *=1 Mnt     k-ni+1

1 »!

-Mnj     Jt-n2+l

Continue in this way; thus

-Mn,

For any integer p,

1        »j> l    ( »i
1 -

np If"1 "2

¿-    lc"r-*l =T7-1 S|c»P.*l+    E   |c»p.*| + ---
A/np   ^np_i+l Aînj,   K k-1 fc-»i+l

nr-l \

Z        \cnp,k\\
n.-5+l '

Id 1
<

1        (1 1 11
— ,—e + —e+ ••• +-e>
r.,-l2        22 2»-1  )

É

<-> 0 as *
A7»P

and is arbitrarily small for £ = 1, 2, 3, • • • . If p is odd,

1 »p
y«, - —   S   I «.,.» !

Mnp  t-np_!+l

I »1 1 n| 1 n',_1

< TT" Z | *»,.* I + TT"     E    I *"*•» H-+J-     £     I c"»-* '
A2ni *-i ■'»»j    *-*i+i *f«,-i t-.np_j+i

1111 11
<-€_|-e+ . . . +-e

Mni   2 Mn,   22 Mnp.x 2^

1      /1_     J^ 1   \

< Jfmi    V2 + 22      " 2"-1/

<->
Mni

which is arbitrarily small. The last two inequalities together show that

yn,— 1 can be made arbitrarily small when p is odd.

Similarly y^+l can be made arbitrarily small when p is even. Thus

the sequence {y„} is divergent. Moreover, if «a<«^»g+i,
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J       ni nj

I y» I   = IT" Z I ¿n,* I   +  —        Z     I C.» I  H-
Mni   i=l A/nj     *-ni+l

+ -¿~       Z        \cn,k\+-^-        Z      \cn.k\

1   (1        1 l  \       Mn

Mni 12 22 2«   j       jtfng+1

c
<-h 1,    since    Mn < M„q+1.

Mni

Thus {yn} is a bounded divergent sequence, and yn—C(xn), where

{xn} is a null sequence.

Hence B[Q(x„)] = (BQ)(xn) = C(xn) =yn- Let Q(xn)=£n- Now since

||Ç||<<» and qn,k—*0 as w—>oo for every fixed k, it follows9 that Q

transforms every null sequence into a null sequence. Thus {£„} is a

null sequence and B(%n) =y*. Hence .4(yn)=£n, and A sums the

bounded divergent sequence {y„} to the limit zero.

The theorem is now proved.

For Q = I, Theorem II follows. For, in this case, Mn= Xjt-i \bn,k\ •

It is obvious that the sequence {Mn} is unbounded ; for if M„ < M tor

every w, B would transform every convergent sequence into a

bounded sequence. This would imply that all the divergent sequences

which are summable-4 are bounded. This is impossible, as already

mentioned.

Corollary. The theorem still holds if all but a finite number of the

columns of C form bounded sequences.

If all but the first N columns are bounded, we put Xk = 0 (ktZN).

Define {Mn} by the equation Mn= Xî-if+i |c»,*| (w>A7), and with

slight modifications the proof proceeds as before.

Examples. The matrix A, already quoted, obtained by modifying

the (C, 1) matrix, has reciprocal B given by

b3n,Zn =   1, b3n-i,3n-l = 3w —   1, Í3n-l,3n-2 =   _  (3w —  2),

&3n-2,3n-2  =  3» —  2, &3n-2,3n-3 =   —   1,

¿3n-2,3n-4 = — (3» — 4),        bn,k = 0 otherwise.

B is not regular, and every column of B tends to zero. The conditions

of Theorem II are satisfied.

» See, e.g., R. G. Cooke [l, p. 64].
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P. Vermes has suggested the following example of a matrix which-

satisfies the conditions of Theorem III.

Let U be the matrix for which wn+i,n=l, Wn,* = 0 otherwise. Take

A = 2~piI-\- U)p, p being a positive integer ^ 2 ; then A is regular, and

sums the sequence {l, 0, 1, 0, 1, 0, • • • } to 1/2. B = 2*>(7+ U)~' is

not regular and its columns are not bounded. Take Ç= (7+£7)p_1;

then ||(?|| =2P_1 and Q has zero column limits. Thus C = BQ

= 2p(7+r/)_1, which has bounded columns, and ||C|| = ».

I am unable to prove that the conditions of Theorem III are also

necessary.

In conclusion I should like to thank Dr. R. G. Cooke and Dr. P.

Vermes, who read the manuscript, for their helpful suggestions.
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