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1. Introduction. The purpose of this paper is to prove the following

theorem, which asserts that for regular topological spaces paracom-

pactness is equivalent to an apparently weaker property, and derive

some of its consequences.

Theorem 1. Let X be a regular topological space. Then X is para-

compact if and only if

(*) every open covering of X has an open refinement V = Uí"_i'l',-,

where each Vi is a locally finite collection of open subsets of X.

Let us quickly recall the definitions of the terms which are used

in the statement of Theorem 1, and which will be used throughout

this paper. Let X be a topological space. A collection <R of subsets of

X is called open (resp. closed) if every element of "R. is open (resp.

closed) in X. A covering of X is a collection of subsets of X whose

union is X; observe that in this paper a covering need not be open.

If 'R. is a covering of X, then by a refinement of 'R we mean a covering

V of X such that every element of V is a subset of some element of

'R. A collection <R of subsets of X is locally finite if every x£X has

a neighborhood which intersects only finitely many elements of <R.

Finally, X is paracompact [3, p. 66] if it is Hausdorff, and if every open

covering of X has an open, locally finite refinement. (Metric spaces

and compact Hausdorff spaces are paracompact (cf. [il] and [3]),

and every paracompact space is normal [3].)

In §2 we prove Theorem 1, after first obtaining some preliminary

lemmas, the first of which may have some independent interest. In

§§2 and 3, we derive some of the consequences of Theorem 1 ; §2

deals with the relation of paracompactness to other topological prop-

erties, and §3 deals with subsets and cartesian products of paracom-

pact spaces.

2. Proof of Theorem 1.

Lemma l.2 The following three properties of a regular topological space

are equivalent.
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2 This result, which will be used in the proof of Theorem 1 below, has other

interesting applications. It may, for instance, be used to give a simple proof of the

following fact, which seems to be new: Every TVspace which is the union of a locally

finite collection of closed, paracompact subsets is paracompact.
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(a) X is paracompact (i.e. every open covering of X has an open, locally

finite refinement).

(b) Every open covering of X has a locally finite refinement.

(c) Every open covering of X has a closed, locally finite refinement.

Proof, (a)—>(b): This is obvious.

(b)—->(c) : Assume (b), and let us prove (c). Let R be an open cover-

ing of X; we must find a closed, locally finite refinement tA of R.

Now since X is regular, there exists an open covering V of X such

that the collection of closures of elements of V is a refinement of R.

By assumption, there exists a locally finite refinement 33 of V, and

we need only take zA to be the collection of closures of the elements

of«.

(c)—»(a) : Assume (c), and let us prove (a). Let Rbe an open cover-

ing of X; we must find an open, locally finite refinement V of R. Let

<A be a locally finite refinement of R, and let <B be a covering of X by

open sets, each of which intersects only finitely many elements of <tA.

Now let W be a closed, locally finite refinement of Í5. For each

AEtA, let A' = X-(j{we.W\Ar\W=(p}; then A' is an open set
containing A, and if WÇW, then W intersects A' if and only if W

intersects A. For each AEzA, pick an RaGRsucIi that AQRa- Let

V = {A T\ Ua IA EtA ). Then V is an open refinement of R, and since

each element of the locally finite covering W intersects only finitely

many elements of V, V is locally finite. This completes the proof.

Lemma 2. Every countable, open covering { Vi}?Li of a topological

space has a locally finite refinement {.¿1 ¿} 4" j such that A,- C Vi for every i.

Proof. Letting Wi = \})=xVj (i-i, 2, ■ ■ ■), we need only set

Ax=Wu and Ai=Wi-Wi-.1 (i = 2, 3, • • • ).
Proof of Theorem 1. To prove the nontrivial half of the theorem,

let X be a regular space satisfying (*) ; we must show that X is para-

compact. By Lemma 1, we need only show that every open covering

R of X has a locally finite refinement. Now by assumption, R has

an open refinement V=ü¡°=1Vi, where each Vi is locally finite. Let

Vi be the union of the elements of Vi (i—1, 2, • • • ); by Lemma 2,

there exists a locally finite refinement {.¿¿J^! of { F.jj™ t such that

AiC Vi for all i. If we now let W= U,ti { Vr\Ai\ VEVi}, then W is a
locally finite refinement of R. This completes the proof.

Let us conclude this section by observing that "regular" cannot be

replaced by "Hausdorff" in Theorem 1 (and hence not in Lemma 1,

as the proof of Theorem 1 shows). In fact, condition (*) is clearly

satisfied by every second-countable space, and Urysohn [13, §6] has

given an example of a second-countable Hausdorff space which is not
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regular, and hence certainly not paracompact.

3. Relation of paracompactness to some other topological proper-

ties. A topological space is called a Lindelöf space if every open

covering of X has a countable subcovering.3 Since every Lindelöf space

trivially satisfies condition (*), it follows from Theorem 1 that every

regular Lindelöf space is paracompact. This result is not new, how-

ever, since it was already obtained by Morita [4, Theorem 10].

According to Bing [l, p. 176], a collection ÍR of subsets of a topo-

logical space X is called discrete if the closures of the elements of 'R

are disjoint, and if every subcollection of these closures has a closed

union. Furthermore, Bing [l, p. 176] calls a topological space X

strongly screenable if every open covering of X has an open refine-

ment V = \JiVi, where each V, is a discrete collection of open sub-

sets of X. Using Theorem 1, we can now prove the following:

Proposition 1. Let X be a regular topological space. Then X is

strongly screenable if and only if X is paracompact.

Proof. If X is strongly screenable, then X certainly satisfies condi-

tion (*), and hence the "only if" part of the proposition follows from

our Theorem 1. The "if" part is an immediate consequence of [ll,

Theorem 2 and Remark after Theorem l]. This completes the proof.

By a partition of unity on a topological space X, we mean a family

3> of continuous functions from X to the non-negative real numbers

such that ^0g* <p(x) = 1 for every x in X. A partition of unity $ on

X is called point-finite if, for every x in X, all but finitely many ele-

ments of $> vanish at x; it is called locally finite if every xinX has a

neighborhood on which all but finitely many elements of <£ vanish. If

<R is a covering of X, then a partition of unity i> on X is subordinated

to "R. if every element of $> vanishes outside some element of 'R (a

function which vanishes nowhere is considered to vanish outside X).

Using Theorem 1, we can now prove the following proposition:

Proposition 2. The following properties of a Ti-space X are equiva-

lent:

(a) X is paracompact.

(b) Every open covering of X has a locally finite partition of unity

subordinated to it.

(c) Every open covering of X has a partition of unity subordinated to

it.

3 As examples of Lindelöf spaces, let us mention second-countable spaces (i.e.

spaces with a countable base for the open sets) and «--compact spaces (i.e. spaces

which are the union of countably many compact subsets).
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Proof, (a)—>(b): This seems tobe known, but we outline the proof

for completeness. Let R be an open covering of X, and let { Va} be

an open, locally finite refinement of R. By [3, Theorem 6] there exists

a closed covering {Aa} oí X such that AaQVa for all a. For each a,

pick a function fa from X to the closed unit interval such that

fa(Aa) = 1 and fa(X— Va) = 0. Let f(x) = ^cfa(x). If we now define

<i>a(x)=fa(x)/f(x) for all x, then {</>„} is a locally finite partition of

unity on X which is subordinated to R.

(b)—>(c): This is obvious.

(c)—»(a): Let X be a TY-space which satisfies (c); we must show

that X is paracompact. Let us first observe that even a point-finite

partition of unity on a space as simple as the unit interval need not

be locally finite. To prove that X is paracompact, we will therefore

use Theorem 1. It follows easily from (c) that X is completely regular,

and we therefore need only verify that X satisfies condition (*). Let

R be an open covering of X, and let $ be a partition of unity on X

which is subordinated to R. For each positive integer *, let Vi be

the collection of all sets of the form {x(E.X\<p(x)>l/i}, with <p&&,

and let TJ = U4" ¡Vi. Clearly V is an open refinement of R, and we

therefore need only check that each V{ is locally finite. Let XoEX,

and let i be a positive integer; we must find a neighborhood W of

Xo which intersects only finitely many elements of Vi. Pick a finite

subset i>o of $> such that 2*G* #(*o)>l —l/2t, and then pick a

neighborhood W of xa such that ^.g* <f>(x)>l — i/i for all xEW.

Now Wcannot intersect {xÇzX\<j>(x)>\/i\ unless </>Gí>o, and there-

fore W intersects only finitely many elements of Vt. This completes

the proof.4

We conclude this section by using Theorem 1 to shed some new

light on how metrizability implies paracompactness [ll, Corollary l].

To do this succinctly, let us introduce the following concept: A collec-

tion of subsets .of a topological space X is called a-locally finite if it is

the union of countably many locally finite collections of subsets of X.

Using this terminology, Theorem 1 asserts that a regular space is

paracompact if and only if every open covering has an open, or-Iocally

finite refinement. On the other hand, Naga ta [7, Theorem l] and

Smirnov [8, Theorem 1 ] have shown that a regular space is metriz-

able if and only if it has a ^-locally finite basis for the open sets.

* Using different methods, it is possible to prove the following result, which is

more precise than (c)—»(a) of Proposition 2: Every open covering of a topological

space which has a partition of unity subordinated to it, and even every subcovering

of such a covering, is normal [12, p. 46], and therefore [ll, proof of Theorem l] has

a locally finite refinement.
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Thus we see that, for regular spaces, "metric" implies "paracompact"

in the same way that "separable metric" implies "Lindelöf." The

implications between all these concepts for a regular space are sum-

marized in the following diagram.

separable <=* countable —> every covering has a +± Lindelöf

metric basis countable refinement

1 i
metric      ?=* o--locally —* every covering has a <=* paracompact.

finite (j-locally finite

basis refinement

4. Subsets and products of paracompact spaces. In this section we

shall use Theorem 1 to prove some results about the paracompact-

ness of subsets and cartesian products of paracompact spaces.

Let us first look at subsets. Certainly an arbitrary subset of a para-

compact space need not be paracompact, as can be seen by embedding

a non-paracompact, completely regular space in its Stone-Cech com-

pactification. Nevertheless, it was shown by Dieudonné [3] that

every closed subset of a paracompact space is paracompact. We now

have the following stronger result, which will be used repeatedly in

the sequel.

Proposition 3. Every F„ subset of a paracompact space is para-

compact.

Proof. Let F be a paracompact space, and let X be an F„ subset of

Y. Since Y is regular, X is regular. By Theorem 1, we need therefore

only show that X satisfies condition (*). Let <R be an open covering of

X; we must find a refinement L'=U<°11 L1,- of 'R, where each Vi is a

locally finite collection of (relatively!) open subsets of X. Let <R' be a

collection of open subsets of Y such that %.= {xr\R'\R'EcK'}-

Since X is an F, in Y, X = 11*1 tA,-, where each A ,■ is closed in Y. Now

for each i, let W{ be the open covering of Y whose elements are

Y—Ai and all the elements of 'R'. Since Y is paracompact, each Wi

has an open, locally finite refinement S «• Let 15i be the collection of

all elements of Sí which intersect ^4»; it follows from our construc-

tion that T5,- is locally finite with respect to Y, that Ai is contained

in the union of the elements of 15i, and that every element of 15i is

contained in some element of tR'. If we now let Vi= {TC\X\ r£T3,},

and set V = U^L1,-, then all our requirements are seen to be satisfied,

and the proof is complete.

Remark. In the above proof, we have actually demonstrated the

following result: If X is an F, subset of a paracompact space Y, and if
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R is a relatively open covering of X, then R has a relatively open

refinement V which is tr-locally finite with respect to Y; i.e. V

= Uí" xVi, where each Vi is a locally finite collection of subsets of Y.

Let us call a subset A of a topological space a generalized F, if

every open set which contains A also contains an F„ which contains

A. Smirnov [9] has proved that every generalized Fc (and a fortiori

every Fa) subset of a normal space is normal. For paracompact spaces

we have the analogous result (formally stronger than Proposition 3)

that every generalized Fa subset of a paracompact space is paracompact ;

this follows easily from Proposition 3 and the following easily checked

fact: If A is a subset of a topological space with the property that

every open set which contains A also contains a paracompact set

which contains A, then A is paracompact. Since Smirnov [9] has

shown that every regular Lindelöf space is a generalized F, in its

Stone-Cech compactification (which is certainly paracompact), this

gives us yet another way of seeing that every regular Lindelöf space

is paracompact.

Proposition 3 cannot be strengthened to assert that every com-

pletely regular space which is the union of countably many closed,

paracompact subsets is paracompact. A striking counter-example is

provided by a space (first constructed by J. Dieudonné [4]) which is

described in Bourbaki [2, p. 116, Ex. 4]. This space is non-normal,

completely regular, and the disjoint union of countably many closed,

discrete (hence metrizable, and a fortiori paracompact) subsets;

moreover, this space is even locally compact, locally metrizable, has

a countable dense subset, and every subset is an F„.

Let us now derive some of the consequences of Proposition 3. To

begin with, we have C. H. Dowker's result [5, p. 634, (h)] that every

subset of a paracompact and perfectly normal5 space X is paracom-

pact. To prove this, we need only show [3, Theorem 2b] that every

open subset of X is paracompact; but this follows immediately from

Proposition 3, since every open subset of X is, by definition, an F„.

The next application of Proposition 3 deals with cartesian prod-

ucts, to which we now turn our attention. The product of two para-

compact spaces need not be paracompact; this was shown by

Sorgenfrey [lO], who gave an example of a paracompact space 5

(which is also Lindelöf and perfectly normal) such that SxS is not

5 A topological space is perfectly normal if it is normal, and if every open subset is

an F„. (In our terminology, every normal space is Hausdorff.) Every metrizable space

is perfectly normal and paracompact. As examples of non-metrizable spaces with both

these properties, let us mention the dual of a separable Banach space in the «^-topol-

ogy, and a CW-complex in the sense of J. H. C. Whitehead [14, p. 223].
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normal. On the other hand, it was shown by Dieudonné [3] that the

cartesian product of paracompact space and a compact Hausdorff

space is always paracompact. Using Proposition 3, we now generalize

this result as follows.

Proposition 4. The cartesian product of a paracompact space and a

regular, a-compact3 space is paracompact.

Proof. Let X be paracompact, and let F be a regular, a-compact

space. Then Y is paracompact, hence completely regular, and there-

fore a subset of a compact Hausdorff space Z. (We may, for instance,

take Z to be the Stone-Cech compactification of Y.) Since Y is

(r-compact, Y is an F„ in Z, and therefore XX Y is an F„ in XXZ.

But XXZ is paracompact by the above result of Dieudonné, and

therefore XX Y is paracompact by Proposition 3. This completes the

proof.

It is not hard to show that Proposition 4 remains true if "para-

compact" is everywhere replaced by "regular Lindelöf" or "regular

<r-compact." The proposition cannot be strengthened, however, by

replacing "<r-compact" by "Lindelöf," as is shown by the counter-

example of Sorgenfrey which was mentioned earlier.

It seems to be unknown whether the cartesian product of a para-

compact space and a metrizable space is always paracompact. But we

can prove the following result, using both Theorem 1 and the anal-

ogous Nagata-Smirnov characterization of metrizable spaces which

was mentioned near the end of Section 3.

Proposition 5. If X is paracompact and perfectly normal? and if Y

is metrizable, then the cartesian product XXY is paracompact and per-

fectly normal.

Proof. According to the above result of Nagata [7] and Smirnov

[8], the metric space Y has a cr-locally finite open basis rV=[}^.1Vi,

where each Vi is locally finite. For convenience, we index V by an

index set A, V= { Va}aç:\, and this notation will be kept throughout

the proof.

Let us first show (without using the paracompactness of X) that

every open subset O of XX Y is an F„\n XXY. For every a£A we

can clearly find an open RaQX such that RaX VaQO, and such that

{BaXVa}açzA is a covering of 0. Now each Ra = {J£.1Ba,,; where

each Ba,j is a closed subset of X. Let Qi,j = {Ba,jXVa\ Va(E:Vi}, and

let Ci,j = \JQi,j. Since (?,-,,• is a locally finite collection of closed

sets, d,i is closed. But 0 = Ui°l1J" îCj.y, and hence 0 is an F„.

Let us now prove that X X Y is paracompact. Since X X Y is clearly
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regular (as the product of regular spaces), we need only show (by

Theorem 1) that every open covering O of X X Y has a a-locally

finite refinement. For each aGA, pick a collection {i?T}7gr«o of

open subsets of X such that \Ry X Va\y(=r(.a),agA is an open refine-

ment of 0; this can clearly be done. Let Wa = \Jy&ria)Ry. Then

{i?7}Tgr(a) is an open covering of the open (and hence F„) subset

Wa of X, and hence, by the remark following Proposition 3, it has

an open, <r-locally finite (with respect to X) refinement {S/¡}s£B(a).

Let 15= {SßX FoJ0€EB(a).<i€EA' dearly 15 is an open refinement of 0.

But since { Va} «£a is a <r-locally finite collection of subsets of F,

and since {-S^I/ägB««) is a a-locally finite collection of subsets of X for

every «GA, it follows easily that 15 is a-locally finite, and this

completes the proof.
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