
THE INTERVAL TOPOLOGY OF A LATTICE1

E. S. NORTHAM

In this paper we obtain a necessary condition that a lattice be

Hausdorff in its interval topology. This condition, stated in Proposi-

tion 2, can be applied to show that the interval topology of a Boolean

algebra is Hausdorff if and only if every element is over an atom and

that an Z-group need not be Hausdorff in its interval topology. The

former supplies a more or less complete answer to problem 76 of

Birkhoff [l] and the latter solves 104. In addition a necessary and

sufficient condition is obtained for a point to be isolated in the

interval topology, thus answering, in part, problem 21.

Frink [2] has defined the interval topology of a lattice (or partly

ordered set) by taking as a sub-basis for the closed sets all finite [a, b]

and infinite [— «>, a], [a, <*>] closed intervals. A basis for the closed

sets is then the collection of all finite unions of such intervals. As

usual we say that a space is Hausdorff if for any two distinct points

x and y, there exist disjoint open sets U and V with #£ U and y£ V.

Furthermore it is easily seen that we may select U and V from any

given basis of open sets. Looking at the complements of U and V we

obtain the dual requirement that given any two distinct points, the

space can be covered by two closed sets each of which contains ex-

actly one of the points, and in addition we may select these sets from

any given basis for the closed sets. In particular:

Proposition 1. The interval topology of a partly ordered set is Haus-

dorff if and only if given any two distinct points there is a covering of the

set by means of a finite number of closed intervals such that no interval

contains both points.

Now in a lattice the intersection of two closed intervals (finite or

infinite) is empty or is a closed interval. For example, if a^x^b and

c-^x^d, then a\Jc^x^bH\d. In other words [a, b]i~\[c, d]= [aKJc,

bC\d\. The same reasoning applies to intervals with infinite end

points. To obtain a necessary condition that the interval topology of

a lattice be Hausdorff, we look at any pair of comparable elements,

x<y, for which by Proposition 1 there is a covering of the lattice

by a finite number of closed intervals such that no interval contains

[x, y]. Taking the trace on [x, y] of each member of the covering we
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obtain a covering of [x, y] by a finite number of closed subintervals,

no one of which is [x, y] itself. In other words, if we exclude x and y,

each point of [x, y] is comparable with at least one of the remaining

end points of the subintervals. The same is true if either x or y is

infinite. Let us say that a collection of elements a< is a separating set

of the interval [x, y] if x<at<y for each a¿ and every element of

[x, y] is comparable with at least one of the a,-. If y covers x we will

agree that the empty set separates [x, y]. Summarizing we have:

Proposition 2. A necessary condition for the interval topology of a

lattice to be Hausdorff is that every closed interval have a finite separating

set (fss).

We are now in a position to prove:

Proposition 3. In a Boolean algebra without atoms, the interval

[0, 7] has no fss.

Proof. If {ai, a2, • ■ ■ , an} is a fss, adjoin the complements of

the c¿, obtaining a new set B. For each subset of B form the meet of

its elements and from this collection of meets let C\, £»,•■•,£* be

the non-null minimal ones. It is convenient to think in terms of sets

in which case the c,- are a collection of disjoint sets whose union inter-

sects each ai and its complement. Now for each c,- choose d{ so that

0<di<cf and let d = di\Jd%\J ■ ■ • \Jdk. Then since o^áña,- we have

d^toi, and since dí\aí >0, ¿$a¿. In other words d is not comparable

with any a¿.

Remark. The lattice of all measurable subsets (modulo sets of

measure zero) of the unit interval is a complete Boolean algebra with-

out atoms, so its interval topology is, by the preceding theorem, not

Hausdorff whereas the order topology is. Thus Proposition 3 may be

applied to the solution of problem 76 of [l]. This problem has al-

ready been solved by B. C. Rennie [3] using a different method.

We might observe further that an examination of the proof of

Proposition 3 shows that the following somewhat more general result

may be established:

Proposition 4. A distributive lattice without atoms, in which each

element (except I) has a non-null disjoint element, is not Hausdorff in

its interval topology.

Proposition 5. The interval topology of a Boolean algebra is Haus-

dorff if and only if every element is over an atom1.

' We have recently learned that this result has been obtained by M. Katetov,

Remarks on Boolean algebras, Colloquium Math. vol. II 3-4 (1951).
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Proof. If some element x is over no atom, then the interval [0, x]

is a Boolean algebra without atoms. Hence, by Proposition 3, it has

no fss and thus from Proposition 2 the topology is not Hausdorff.

Assume then that every element is over an atom and let x and y be

any pair of distinct elements. Since xf\y' and yi~\x' cannot both be

null there must be an atom a under, say, x but not y. It follows at

once that the intervals [a, I] and [0, a'] are disjoint closed intervals

which cover the algebra, and the topology is Hausdorff (Proposition

1).

Next we apply Proposition 2 to Problem 104 of [l], which should

read: "Is any /-group a topological group and a topological lattice

in its interval topology?" Since the interval topology is T\ and a

topological group is regular, the interval topology must be Hausdorff

if the /-group is to be a topological group. Now the additive group of

all continuous real-valued functions defined on the closed unit inter-

val is an /-group using the natural ordering [l, p. 216]. If /0 denotes

the function f{x) = 0 and /i denotes the function f(x) = 1, we show

that the interval [fo, /i] has no fss. If {ai • • -a«} were such a set,

choose for each o¿ some point x¡ where o,(x,) y* 1. Define a continuous

function a(x) to be 1 at each of the Xi and elsewhere to take on values

between 0 and 1 so that its integral over the interval is less than that

of any a,-. Clearly a(x) is not comparable with any of the a,-. We have

shown :

Proposition 6. An l-group need not be a topological group in its

interval topology.

Finally we find a necessary and sufficient condition for a point x

to be isolated in the interval topology of a lattice L. This is part of

Problem 21 of [l]. First suppose that 0<x<7. If x is isolated, then

L — x is a closed set and in fact must be the union of a finite number

of closed intervals {Ii ■ • • In}. Let P denote the set of elements of

L under x and take the trace of each /* on P, which is a closed interval

by some earlier remarks. From the set of upper end points of the

traces select the maximal ones. These form a nonempty finite set

{Xi • • • x„}, each x{ is covered by x, and any element under x is under

some Xi. The same argument can be applied to the set of elements

over x. Looking at the lower end point of each J* let us replace it by

— oo (x) if it is under (over) x. Then if an upper end point is under

(over) x replace it by x ( co). Having done this we have a covering of

I by a finite number of closed intervals for which none of the end

points (except possibly x, 0, or /) is comparable with x. In other

words x belongs to a fss of L in which no other member is compar-
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able with x, and we have shown the necessity of the conditions in the

following

Proposition 7. The following conditions are necessary and sufficient

for an element x to be isolated in the interval topology of a lattice L.

(a) x covers a finite number of elements and every element under x is

under an element covered by x.

(b) x is covered by a finite number of elements and every element over

x is over an element which covers x.

(c) x belongs to a fss of L in which no other member is comparable

with x.

It is easy to see that the above conditions are sufficient. If the

fss is {x, ai • • • at} and if x covers {bi • • • bm} and if x is covered by

{ci • • • cn}, than L—x is the union of the following intervals:

[— oo, a,] [a{, » ] [—oc, bi] [d, oo ] for all permissible values of i.

If x is 0 or I then clearly (b) or (a) is necessary and sufficient for x to

be isolated. In conclusion it should be stated that there are lattices

having a fss for each interval yet containing nonisolated elements

satisfying (a) and (b) of Proposition 7. Furthermore the interval

topology is not Hausdorff.
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