point so that instead of $U \cap A$ and $V \cap B$ one takes any subarc of A in U containing a and any subarc of B in V containing b. These changes are felt to be undesirable in being too great a departure from the original concept of D(S) and in excluding sets with nonempty interiors.

UNIVERSITY OF MICHIGAN

THE DEGREE FORMULA FOR THE SKEW-REPRESENTA-TIONS OF THE SYMMETRIC GROUP¹

W. FEIT

1. Introduction. In his paper on the representations of the symmetric group,² G. de B. Robinson defines certain "skew-representations" and associates these to skew-diagrams (to be defined below) analogously to the way the irreducible representations of the symmetric group are associated with regular diagrams. Furthermore he shows that the degree of such a skew-representation is equal to the number of orderings of the related skew-diagram.³

The object of this note is to derive a formula for the degree of skewrepresentation related to a given skew-diagram.⁴ This problem will be treated strictly in terms of the number of orderings of such a diagram, and from this point of view is very similar to the question attacked in [5] by R. M. Thrall.

In §4, this formula is applied to the problem of computing the characters of certain classes of the symmetric group.

2. Definitions and lemmas. A partially ordered set P is said to be regular or a regular diagram if:

(I) The elements of P may be represented by ordered pairs of integers (i, j), i>0, j>0, where $(i, j) \leq (p, m)$ if and only if $i \leq p$ and $j \leq m$, (i, j) = (p, m) if and only if i=p and j=m,

(II) $\max_{i} (i, j) \leq \max_{i} (i, j')$ whenever $j \geq j'$,

(III) $(i, k) \in P$ implies $(j, k) \in P$ for all integers j with $1 \le j \le i$,

Presented to the Society, April 25, 1952; received by the editors March 9, 1953.

² See [1; 2; 3; 4].

^a See [1, p. 290].

⁴ This is an answer to the question raised in [1, p. 294], the ϕ of that paper is the g of the theorem below.

¹ The work on this paper was performed under the sponsorship of the O.N.R.

(IV) If P is nonempty, $(1, 1) \in P$ and $(1, 1) \leq p$ for all $p \in P$.

If P is regular and has k rows with a_i elements in the *j*th row, P will be denoted by $[a_1, \dots, a_k]$; clearly $a_1 \ge a_2 \ge \dots \ge a_k > 0$. If $Q = [b_1, \dots, b_k]$, with $b_i \le a_i$, $i=1, \dots, k$, then $Q \subset P$ and $P-Q = [a_1, \dots, a_k] - [b_1, \dots, b_k]$ is the ordinary set theoretic difference, a partially ordered set of this form will be called *skew* or a *skew diagram*.

A one to one order preserving mapping of a regular or skew-diagram onto a linearly ordered set will be called an *ordering*. The number of orderings of a skew-diagram $[a_1, \dots, a_k] - [b_1, \dots, b_k]$ will be denoted by $g([a_1, \dots, a_k] - [b_1, \dots, b_k])$ if $b_r = b_{r+1} = \cdots$ $= b_k = 0$. This will simply be written as $g([a_1, \dots, a_k] - [b_1, \dots, b_{r-1}])$; if r = 1, this will be written as $g([a_1, \dots, a_k])$.

Before proceeding with a proof of the formula for g(K) where $K = [a_1, \dots, a_k] - [b_1, \dots, b_k]$, $a_i \ge b_i$, $i = 1, \dots, k$, it is necessary to note the following relations, conventions, and lemmas.

The only possible first elements in any ordering of $K = [a_1, \dots, a_k] - [b_1, \dots, b_k]$ are elements of the form (b_i+1, i) ; an element of this type is first in some ordering if and only if $(b_i+1, i) \in K$ and $(b_{i-1}+1, i-1) \in K$, which is equivalent to saying that $b_i \neq b_{i-1}$, $b_i \neq a_i$, hence

(1)
$$g([a_1, \dots, a_k] - [b_1, \dots, b_k]) = \sum g([a_1, \dots, a_k] - [b_1, \dots, b_j + 1, \dots, b_k])$$

where the summation is taken over all j with $b_j \neq b_{j-1}$, and $b_j \neq a_j$. This simply states that the number of orderings of K is the sum of the number of orderings of $K - \{x\}$ as x ranges over all possible first elements.

The convention will be made throughout this paper that 1/r!=0 if r<0.

If A is a determinant, then the minor of A with the *p*th row and *m*th column deleted will be denoted by A_{pm} . The following lemma is obvious.

LEMMA 1. If $A = \det(a_{ij})$, $i, j = 1, \dots, k$, and $A^{(i)} = \det(a_{ij}^{(i)})$ where $a_{ij}^{(i)} = a_{ij}$ if $i \neq t$ and $a_{ij}^{(i)} = r_j a_{ij}$, $j = 1, \dots, k$, then $\sum_{i=1}^{k} A^{(i)} = A(\sum_{j=1}^{k} r_j)$.

LEMMA 2. If there exists a t such that $a_{ij}=0$ for $i \leq t \leq j$, then A = det $(a_{ij})=0$.

The proof is by induction on k, the dimension of (a_{ij}) . The lemma is clearly true for k=1. Now assume it true for k-1, then

1953]

W. FEIT

$$A = \sum_{i=1}^{k} (-1)^{i+1} a_{1i} A_{1i} = \sum_{j=1}^{i-1} (-1)^{j+1} a_{1j} A_{1j},$$

as $a_{1j}=0$ for $j \ge t$. Each determinant A_{1j} , j < t, is of the above form and hence, by the induction hypothesis, $A_{1j}=0$, j < t, therefore A=0.

3. The formula for skew-diagrams.

THEOREM. $g([a_1, \dots, a_k] - [b_1, \dots, b_k]) = n! \text{ det } (z_{ij}), \text{ where } n = \sum_{i=1}^k (a_i - b_i), \ z_{ij} = 1/(a_j - b_i - j + i)!.$

The proof is by induction on *n*. Let n=1. It is sufficient to show that det $(z_{ij}) = 1$. There exists a *t* such that $a_t = b_t + 1$ and $a_i = b_i$, for $i \neq t$, therefore $z_{tt} = 1/(a_t - b_i)! = 1/1! = 1$, and $z_{ii} = 1/(a_i - b_i)! = 1/0! = 1$ for $i \neq t$.

For $j > i \neq t$, $(a_j - b_i - j + i) = (a_j - a_i - j + i) \leq (-j + i) < 0$, therefore $z_{ij} = 1/(a_j - b_i - j + i)! = 0$. For j > i = t, $(a_j - b_i - j + t) = (a_j - a_i - j + t) + 1 \leq (-j + t + 1) \leq 0$. $(a_j - b_i - j + t) = 0$ if and only if $a_j = a_i$ and j = t + 1, therefore $a_i = a_{t+1}$, but then $b_i + 1 = a_i = a_{t+1} = b_{t+1}$, and hence $b_i < b_{i+1}$, which is impossible; therefore $(a_j - b_i - j + t) < 0$, which implies $z_{ij} = 1/(a_j - b_i - j + t)! = 0$ for j > t. Combining these results yields $z_{ii} = 1$, $z_{ij} = 0$ for j > i, which shows that

$$\det (z_{ij}) = \prod_{i=1}^k z_{ii} = 1.$$

Now assume the theorem true for n-1. $g([a_1, \dots, a_k] - [b_1, \dots, b_t+1, \dots, b_k]) = (n-1)! \det (\mathbf{z}_{ij}^{(l)})$ by the induction hypothesis where $\mathbf{z}_{ij}^{(l)} = \mathbf{z}_{ij}$ if $i \neq t$ and $\mathbf{z}_{ij}^{(l)} = 1/(a_j - b_t - j + t - 1)!$. If $b_t = b_{t-1}$, $\mathbf{z}_{i-1,j}^{(l)} = 1/(a_j - b_{t-1} - j + t - 1)! = 1/(a_j - b_t - j + t - 1)!$

If $b_t = b_{t-1}$, $\mathbf{z}_{i-1,j}^{(t)} = 1/(a_j - b_{t-1} - j + t - 1)! = 1/(a_j - b_t - j + t - 1)!$ = $\mathbf{z}_{ij}^{(t)}$, therefore det $(\mathbf{z}_{ij}^{(t)}) = 0$ as two columns are identical. Let $a_t = b_t$; if $i < t \le j$, then $\mathbf{z}_{ij}^{(t)} = \mathbf{z}_{ij} = 1/(a_j - b_i - j + i)! = 0$ because $(a_j - b_i - j + i)$ $\le (a_t - b_t - j + i) = (-j + i) < 0$. If $i = t \le j$, then $\mathbf{z}_{ij}^{(t)} = 1/(a_j - b_t - j + t) - 1! = 0$ because

$$(a_j - b_i - j + t - 1) = (a_i - b_i - j + t - 1)$$

= $(-j + t - 1) \le -1 < 0.$

Therefore for $i \le t \le j$, $z_{ij}^{(l)} = 0$ and hence, by Lemma 2, det $(z_{ij}^{(l)}) = 0$. From the cases just examined above it follows that

(2)

$$g([a_1, \dots, a_k] - [b_1, \dots, b_k])$$

$$= \sum_{t=1}^k g([a_1, \dots, a_k] - [b_1, \dots, b_t + 1, \dots, b_k])$$

[October

742

as only zero has been added to the right-hand side of (1).

By the induction hypothesis and (2),

$$g([a_1, \cdots, a_k] - [b_1, \cdots, b_k]) = (n-1)! \sum_{t=1}^k \det (z_{ij}^{(t)})$$

where $z_{ij}^{(t)} = z_{ij}$ for $i \neq t$ and

1953]

$$\begin{aligned} \mathbf{z}_{ij}^{(t)} &= 1/(a_j - b_i - j + t - 1)! = (a_j - b_i - j + t)/(a_j - b_i - j + t)! \\ &= (a_j - j)\mathbf{z}_{ij} + (t - b_i)\mathbf{z}_{ij}. \end{aligned}$$

Therefore by Lemma 1

$$\sum_{i=1}^{k} \det (z_{ij}^{(i)}) = \det (z_{ij}) \left(\sum_{i=1}^{k} t - \sum_{i=1}^{k} b_i + \sum_{i=1}^{k} a_i - \sum_{j=1}^{k} j \right)$$
$$= n \det (z_{ij}),$$

from which it follows that

 $g([a_1,\cdots,a_k]-[b_1,\cdots,b_k])=n! \det (z_{ij})$

and the thorem is proved.

4. An application.⁵ As an application to the theory of characters of the symmetric group, the following formula is proved:

THEOREM. Let χ^{λ} denote the irreducible character associated with the regular diagram λ ; if σ is a permutation in S_{m+n} which leaves the last n letters fixed, then

(3)
$$\chi^{\lambda}(\sigma) = \sum \chi^{\mu}(\sigma)g(\lambda - \mu)$$

where the summation ranges over all regular diagrams μ containing m points.

PROOF. Let $\chi^{\lambda-\mu}$ denote the (reducible) representation associated with the skew-diagram $\lambda - \mu$.⁶ Robinson has shown⁷ that if a permutation in S_{m+n} is of the form $\sigma_1\sigma_2$, where σ_1 acts on the first *m* letters, σ_2 on the last *n* letters, then

(4)
$$\chi^{\lambda}(\sigma_{1}\sigma_{2}) = \sum \chi^{\mu}(\sigma_{1})\chi^{\lambda-\mu}(\sigma_{2})$$

where the summation is over all regular diagrams μ on *m* letters contained in the regular diagram λ .

⁵ This was suggested by Professor Robinson and Thrall and relates this result to a forthcoming paper by J. S. Frame, R. M. Thrall, and G. de B. Robinson.

[•] See [1], especially pp. 289–290.

⁷ See [1].

The function $g(\lambda - \mu)$ evaluated in §3 is the degree of the character $\chi^{\lambda-\mu}$. Hence if σ_2 is the identity permutation, formula (4) reduces to

(5)
$$\chi^{\lambda}(\sigma_1) = \sum \chi^{\mu}(\sigma_1)g(\lambda - \mu).$$

In the proof of the main theorem in §3 it was shown that $g(\lambda - \mu) = 0$ if μ is not contained in λ , therefore the sum may be extended over all regular diagrams μ containing m points.

If for example σ is a transposition then $\chi^{[2]} = 1$, $\chi^{[1^2]} = -1$ and hence $\chi^{\lambda}(\sigma) = g(\lambda - [2]) - g(\lambda - [1^2])$, for any regular diagram λ .

References

1. G. de B. Robinson, On the representations of the symmetric group, Second Paper, Amer. J. Math. vol. 69 (1947) pp. 286-298.

 2. ——, Third Paper, ibid. vol. 70 (1948) pp. 279-294.
 3. ——, On the modular representations of the symmetric group, Second Paper, Proc. Nat. Acad. Sci. U. S. A. vol. 38 (1952) pp. 129-133.

4. ——, Third Paper, ibid. vol. 38 (1952) pp. 424-426.

5. R. M. Thrall, A combinatorial problem, Michigan Mathematical Journal, vol. 1 (1952) pp. 81-88.

UNIVERSITY OF MICHIGAN