point so that instead of $U \cap A$ and $V \cap B$ one takes any subarc of $A$ in $U$ containing $a$ and any subarc of $B$ in $V$ containing $b$. These changes are felt to be undesirable in being too great a departure from the original concept of $D(S)$ and in excluding sets with nonempty interiors.

University of Michigan

## THE DEGREE FORMULA FOR THE SKEW-REPRESENTATIONS OF THE SYMMETRIC GROUP1

W. FEIT

1. Introduction. In his paper on the representations of the symmetric group, ${ }^{2}$ G. de B. Robinson defines certain "skew-representations" and associates these to skew-diagrams (to be defined below) analogously to the way the irreducible representations of the symmetric group are associated with regular diagrams. Furthermore he shows that the degree of such a skew-representation is equal to the number of orderings of the related skew-diagram. ${ }^{3}$

The object of this note is to derive a formula for the degree of skewrepresentation related to a given skew-diagram. ${ }^{4}$ This problem will be treated strictly in terms of the number of orderings of such a diagram, and from this point of view is very similar to the question attacked in [5] by R. M. Thrall.

In §4, this formula is applied to the problem of computing the characters of certain classes of the symmetric group.
2. Definitions and lemmas. A partially ordered set $P$ is said to be regular or a regular diagram if:
(I) The elements of $P$ may be represented by ordered pairs of integers $(i, j), i>0, j>0$, where $(i, j) \leqq(p, m)$ if and only if $i \leqq p$ and $j \leqq m,(i, j)=(p, m)$ if and only if $i=p$ and $j=m$,
(II) $\max _{i}(i, j) \leqq \max _{i}\left(i, j^{\prime}\right)$ whenever $j \geqq j^{\prime}$,
(III) $(i, k) \in P$ implies $(j, k) \in P$ for all integers $j$ with $1 \leqq j \leqq i$,

[^0](IV) If $P$ is nonempty, $(1,1) \in P$ and $(1,1) \leqq p$ for all $p \in P$.

If $P$ is regular and has $k$ rows with $a_{j}$ elements in the $j$ th row, $P$ will be denoted by $\left[a_{1}, \cdots, a_{k}\right.$ ]; clearly $a_{1} \geqq a_{2} \geqq \cdots \geqq a_{k}>0$. If $Q$ $=\left[b_{1}, \cdots, b_{k}\right]$, with $b_{i} \leqq a_{i}, i=1, \cdots, k$, then $Q \subset P$ and $P-Q$ $=\left[a_{1}, \cdots, a_{k}\right]-\left[b_{1}, \cdots, b_{k}\right]$ is the ordinary set theoretic difference, a partially ordered set of this form will be called skew or a skew diagram.

A one to one order preserving mapping of a regular or skew-diagram onto a linearly ordered set will be called an ordering. The number of orderings of a skew-diagram $\left[a_{1}, \cdots, a_{k}\right]-\left[b_{1}, \cdots, b_{k}\right]$ will be denoted by $g\left(\left[a_{1}, \cdots, a_{k}\right]-\left[b_{1}, \cdots, b_{k}\right]\right)$ if $b_{r}=b_{r+1}=\cdots$ $=b_{k}=0$. This will simply be written as $g\left(\left[a_{1}, \cdots, a_{k}\right]-\left[b_{1}, \cdots\right.\right.$, $\left.\left.b_{r-1}\right]\right)$; if $r=1$, this will be written as $g\left(\left[a_{1}, \cdots, a_{k}\right]\right)$.

Before proceeding with a proof of the formula for $g(K)$ where $K$ $=\left[a_{1}, \cdots, a_{k}\right]-\left[b_{1}, \cdots, b_{k}\right], a_{i} \geqq b_{i}, i=1, \cdots, k$, it is necessary to note the following relations, conventions, and lemmas.

The only possible first elements in any ordering of $K=\left[a_{1}, \cdots, a_{k}\right]$ $-\left[b_{1}, \cdots, b_{k}\right]$ are elements of the form ( $b_{i}+1, i$ ); an element of this type is first in some ordering if and only if $\left(b_{i}+1, i\right) \in K$ and ( $\left.b_{i-1}+1, i-1\right) \notin K$, which is equivalent to saying that $b_{i} \neq b_{i-1}$, $b_{i} \neq a_{i}$, hence

$$
\begin{align*}
& g\left(\left[a_{1}, \cdots,\right.\right. \\
& \left.\left.\quad a_{k}\right]-\left[b_{1}, \cdots, b_{k}\right]\right)  \tag{1}\\
& \quad=\sum g\left(\left[a_{1}, \cdots, a_{k}\right]-\left[b_{1}, \cdots, b_{j}+1, \cdots, b_{k}\right]\right)
\end{align*}
$$

where the summation is taken over all $j$ with $b_{j} \neq b_{j-1}$, and $b_{j} \neq a_{j}$. This simply states that the number of orderings of $K$ is the sum of the number of orderings of $K-\{x\}$ as $x$ ranges over all possible first elements.

The convention will be made throughout this paper that $1 / r!=0$ if $r<0$.

If $A$ is a determinant, then the minor of $A$ with the $p$ th row and $m$ th column deleted will be denoted by $A_{p m}$. The following lemma is obvious.

Lemma 1. If $A=\operatorname{det}\left(a_{i j}\right), i, j=1, \cdots, k$, and $A^{(t)}=\operatorname{det}\left(a_{i j}^{(t)}\right)$ where $a_{i j}^{(t)}=a_{i j}$ if $i \neq t$ and $a_{i j}^{(t)}=r_{j} a_{t j}, j=1, \cdots, k$, then $\sum_{i=1}^{k} A^{(t)}$ $=A\left(\sum_{j=1}^{k} r_{j}\right)$.

Lemma 2. If there exists a such that $a_{i j}=0$ for $i \leqq t \leqq j$, then $A$ $=\operatorname{det}\left(a_{i j}\right)=0$.

The proof is by induction on $k$, the dimension of $\left(a_{i j}\right)$. The lemma is clearly true for $k=1$. Now assume it true for $k-1$, then

$$
A=\sum_{j=1}^{b}(-1)^{i+1} a_{1 j} A_{1 j}=\sum_{j=1}^{t-1}(-1)^{j+1} a_{1 j} A_{1 j}
$$

as $a_{1 j}=0$ for $j \geqq t$. Each determinant $A_{1 j}, j<t$, is of the above form and hence, by the induction hypothesis, $A_{1 j}=0, j<t$, therefore $A=0$.

## 3. The formula for skew-diagrams.

Theorem. $g\left(\left[a_{1}, \cdots, a_{k}\right]-\left[b_{1}, \cdots, b_{k}\right]\right)=n!\operatorname{det}\left(z_{i j}\right)$, where $n=\sum_{i=1}^{k}\left(a_{i}-b_{i}\right), z_{i j}=1 /\left(a_{j}-b_{i}-j+i\right)!$.

The proof is by induction on $n$. Let $n=1$. It is sufficient to show that det $\left(z_{i j}\right)=1$. There exists a $t$ such that $a_{t}=b_{t}+1$ and $a_{i}=b_{i}$, for $i \neq t$, therefore $z_{t t}=1 /\left(a_{t}-b_{t}\right)!=1 / 1!=1$, and $z_{i i}=1 /\left(a_{i}-b_{i}\right)!=1 / 0$ ! $=1$ for $i \neq t$.

For $j>i \neq t,\left(a_{j}-b_{i}-j+i\right)=\left(a_{j}-a_{i}-j+i\right) \leqq(-j+i)<0$, therefore $z_{i j}=1 /\left(a_{j}-b_{i}-j+i\right)!=0$. For $j>i=t,\left(a_{j}-b_{t}-j+t\right)=\left(a_{i}-a_{t}-j+t\right.$ $+1) \leqq(-j+t+1) \leqq 0 .\left(a_{j}-b_{t}-j+t\right)=0$ if and only if $a_{j}=a_{t}$ and $j=t+1$, therefore $a_{t}=a_{t+1}$, but then $b_{t}+1=a_{t}=a_{t+1}=b_{t+1}$, and hence $b_{t}<b_{t+1}$, which is impossible; therefore $\left(a_{j}-b_{t}-j+t\right)<0$, which implies $z_{t i}=1 /\left(a_{i}-b_{t}-j+t\right)!=0$ for $j>t$. Combining these results yields $z_{i i}=1, z_{i j}=0$ for $j>i$, which shows that

$$
\operatorname{det}\left(z_{i j}\right)=\prod_{i=1}^{k} z_{i i}=1
$$

Now assume the theorem true for $n-1 . g\left(\left[a_{1}, \cdots, a_{k}\right]-\left[b_{1}, \cdots\right.\right.$, $\left.\left.b_{t}+1, \cdots, b_{k}\right]\right)=(n-1)!\operatorname{det}\left(z_{k}^{(t)}\right)$ by the induction hypothesis where $z_{i j}^{(i)}=z_{i j}$ if $i \neq t$ and $z_{i j}^{(i)}=1 /\left(a_{j}-b_{i}-j+t-1\right)!$.

If $\quad b_{t}=b_{t-1}, \quad x_{i-1, j}^{(t)}=1 /\left(a_{j}-b_{t-1}-j+t-1\right)!=1 /\left(a_{j}-b_{t}-j+t-1\right)$ ! $=z_{i j}^{(t)}$, therefore $\operatorname{det}\left(z_{i j}^{(t)}\right)=0$ as two columns are identical. Let $a_{t}=b_{i}$; if $i<t \leqq j$, then $\varepsilon_{i j}^{(i)}=z_{i j}=1 /\left(a_{j}-b_{i}-j+i\right)!=0$ because $\left(a_{j}-b_{i}-j+i\right)$ $\leqq\left(a_{t}-b_{t}-j+i\right)=(-j+i)<0$. If $i=t \leqq j$, then $z_{i j}^{(t)}=1 /\left(a_{j}-b_{t}-j+t\right.$ $-1)!=0$ because

$$
\begin{aligned}
\left(a_{j}-b_{t}-j+t-1\right) & =\left(a_{t}-b_{t}-j+t-1\right) \\
& =(-j+t-1) \leqq-1<0 .
\end{aligned}
$$

Therefore for $i \leqq t \leqq j, z_{i j}^{(t)}=0$ and hence, by Lemma 2 , $\operatorname{det}\left(z_{i j}^{(t)}\right)=0$. From the cases just examined above it follows that

$$
\begin{align*}
& g\left(\left[a_{1}, \cdots, a_{k}\right]-\left[b_{1}, \cdots, b_{k}\right]\right) \\
& \quad=\sum_{t=1}^{k} g\left(\left[a_{1}, \cdots, a_{k}\right]-\left[b_{1}, \cdots, b_{t}+1, \cdots, b_{k}\right]\right) \tag{2}
\end{align*}
$$

as only zero has been added to the right-hand side of (1).
By the induction hypothesis and (2),

$$
g\left(\left[a_{1}, \cdots, a_{k}\right]-\left[b_{1}, \cdots, b_{k}\right]\right)=(n-1)!\sum_{i=1}^{k} \operatorname{det}\left(z_{i j}^{(t)}\right)
$$

where $z_{i j}^{(t)}=z_{i j}$ for $i \neq t$ and

$$
\begin{aligned}
z_{t j}^{(t)}=1 /\left(a_{j}-b_{t}-j+t-1\right)! & =\left(a_{j}-b_{t}-j+t\right) /\left(a_{j}-b_{t}-j+t\right)! \\
& =\left(a_{j}-j\right) z_{t j}+\left(t-b_{t}\right) z_{t j} .
\end{aligned}
$$

Therefore by Lemma 1

$$
\begin{aligned}
\sum_{t=1}^{k} \operatorname{det}\left(z_{i j}^{(t)}\right) & =\operatorname{det}\left(z_{i j}\right)\left(\sum_{t=1}^{k} t-\sum_{i=1}^{k} b_{t}+\sum_{i=1}^{k} a_{i}-\sum_{j=1}^{b} j\right) \\
& =n \operatorname{det}\left(z_{i j}\right)
\end{aligned}
$$

from which it follows that

$$
g\left(\left[a_{1}, \cdots, a_{k}\right]-\left[b_{1}, \cdots, b_{k}\right]\right)=n!\operatorname{det}\left(z_{i j}\right)
$$

and the thorem is proved.
4. An application. ${ }^{5}$ As an application to the theory of characters of the symmetric group, the following formula is proved:

Theorem. Let $\chi^{\lambda}$ denote the irreducible character associated with the regular diagram $\lambda$; if $\sigma$ is a permutation in $S_{m+n}$ which leaves the last $n$ letters fixed, then

$$
\begin{equation*}
\chi^{\lambda}(\sigma)=\sum \chi^{\mu}(\sigma) g(\lambda-\mu) \tag{3}
\end{equation*}
$$

where the summation ranges over all regular diagrams $\mu$ containing $m$ points.

Proof. Let $\chi^{\lambda-\mu}$ denote the (reducible) representation associated with the skew-diagram $\lambda-\mu .{ }^{6}$ Robinson has shown ${ }^{7}$ that if a permutation in $S_{m+n}$ is of the form $\sigma_{1} \sigma_{2}$, where $\sigma_{1}$ acts on the first $m$ letters, $\sigma_{2}$ on the last $n$ letters, then

$$
\begin{equation*}
\chi^{\lambda}\left(\sigma_{1} \sigma_{2}\right)=\sum \chi^{\mu}\left(\sigma_{1}\right) \chi^{\lambda-\mu}\left(\sigma_{2}\right) \tag{4}
\end{equation*}
$$

where the summation is over all regular diagrams $\mu$ on $m$ letters contained in the regular diagram $\lambda$.

[^1]The function $g(\lambda-\mu)$ evaluated in $\S 3$ is the degree of the character $\chi^{\lambda-\mu}$. Hence if $\sigma_{2}$ is the identity permutation, formula (4) reduces to

$$
\begin{equation*}
\chi^{\lambda}\left(\sigma_{1}\right)=\sum \chi^{\mu}\left(\sigma_{1}\right) g(\lambda-\mu) . \tag{5}
\end{equation*}
$$

In the proof of the main theorem in §3 it was shown that $g(\lambda-\mu)=0$ if $\mu$ is not contained in $\lambda$, therefore the sum may be extended over all regular diagrams $\mu$ containing $m$ points.

If for example $\sigma$ is a transposition then $\chi^{[2]}=1, \chi^{\left[1^{2}\right]}=-1$ and hence $\chi^{\lambda}(\sigma)=g(\lambda-[2])-g\left(\lambda-\left[1^{2}\right]\right)$, for any regular diagram $\lambda$.

## References

1. G. de B. Robinson, On the representations of the symmetric group, Second Paper, Amer. J. Math. vol. 69 (1947) pp. 286-298.
2. ——, Third Paper, ibid. vol. 70 (1948) pp. 279-294.
3. ——, On the modular representations of the symmetric group, Second Paper, Proc. Nat. Acad. Sci. U. S. A. vol. 38 (1952) pp. 129-133.
4. -_, Third Paper, ibid. vol. 38 (1952) pp. 424-426.
5. R. M. Thrall, A combinatorial problem, Michigan Mathematical Journal, vol. 1 (1952) pp. 81-88.

University of Michigan


[^0]:    Presented to the Society, April 25, 1952; received by the editors March 9, 1953.
    ${ }^{1}$ The work on this paper was performed under the sponsorship of the O.N.R.
    ${ }^{2}$ See $[1 ; 2 ; 3 ; 4]$.
    ${ }^{8}$ See [1, p. 290].
    ${ }^{4}$ This is an answer to the question raised in [1, p. 294], the $\phi$ of that paper is the $g$ of the theorem below.

[^1]:    ${ }^{5}$ This was suggested by Professor Robinson and Thrall and relates this result to a forthcoming paper by J. S. Frame, R. M. Thrall, and G. de B. Robinson.

    - See [1], especially pp. 289-290.
    ${ }^{1}$ See [1].

