
SOME NON-ABELIAN EXTENSIONS OF COMPLETELY
DIVISIBLE GROUPS1

FRANKLIN HAIMO

1. Introduction. Baer [l; 2] has showed that those abelian groups

G which are direct summands of every including abelian group are

precisely those abelian groups G for which nG = G for every positive

integer n. The latter class of groups consists of the so-called complete

or infinitely divisible abelian groups. Examination of the proof of

the equivalence of these two classes discloses essential difficulties in

the way of extension to the non-abelian case. Once "complete" is

suitably defined for these latter groups, we can prove the following:

Let H be a complete group interpolated into the ascending central

series of a group G. Let A be a subgroup, maximal with respect to the

property of meeting H on that portion of the ascending series of G

below H. Then if N(K) is the normalizer of K in G, N(K) =H+K.

This result seems to be the natural extension of half of the Baer theo-

rem to the non-abelian case.

Let us write all groups additively, whether they be abelian or not.

For a subgroup H of a group G we let N(H; G) be the normalizer of

H in G. Cv is to be the cyclic subgroup of G generated by the element

vEG. C(v; G) is to be the centralizer of v in G. For a subgroup H,

C(H; G) is to denote the centralizer of Hm G. (See [4] for definitions.)

Let 0 be the unity of G, and let (0) be the one element subgroup of G.

In what follows, m, n, and r will always denote nonzero integers.

D(H; G), for a subset H of G, is to be the set of all x£G for which
there exists m = m(x) with mxEH. D(H; G), the division-hull of H

in G, need not be a subgroup of G in the non-abelian case even if H

is a subgroup.

We shall say that a group G is complete if, to each ordered pair

(g, n), where gEG, there exists a finite set of elements gt(g, n)=gt

(i = l, 2, ■ ■ ■ , m(g, n)=m) with ngi+ng2+ ■ ■ ■ +ngm = g. If G is

both abelian and complete we can always choose m = l.

For a group G, define in the customary fashion [4] the ascending

central series [Zi(G)\ (i = 0, 1, 2, • • • ), where Z0(G) = (0), Zi(G) is

the center of G, and Zi+i(G)/Zi(G) is the center of G/Zi(G). A sub-

group H of G is said to be interpolated in the ascending central series at

d if Zd(G)EHEZd+i(G) (where £ does not preclude equality), and

d is the least integer for which this is true.
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If H and K are subsets of a group G, let H-\-K be the set of all

h + k, where h(E.H and k^K. In general, H+K need not be a sub-

group, though it surely is a subgroup if both H and K are and at

least one of these is normal. We note here that © denotes direct sum-

mation of subgroups.

2. The normalizer decomposition.

Lemma 1. Let H and K be a pair of subgroups of G where K is max-

imal with respect to the property of being disjoint from H. Then N(K; G)

CD(H+K; G).

Proof. We follow [l] and [3]. If x<=N(K; G), x<£H+K, then

x^K. Form the subgroup K'={K, x} which has the generators x

and all the elements of K. K' includes K properly. By the maximal

character of K, one can find a nonzero element h£zKT\H. Since

x£lN(K; G), it is possible to find an integer / and an element k(£K

with h = tx+k. If t = 0, then h = k; and HC\K = (0) then implies h = 0,
a contradiction. Hence tx^H+K with nonzero /, and xG-D(H+K; G).

Since also (H+K)r\N(K; G)CD(H+K; G), it follows that N(K; G)

CD(H+K; G).

Theorem 1. Let H be a complete group interpolated at d into the

ascending central series of a group G. Let K be a subgroup of G, maximal

with respect to the property of having precisely Zd(G) as its intersection

with H. Then N(K; G)=H+K and N(K; G)/Zd(G)^H/Zd(G)

®K/Zd(G).

Proof. We follow [3]. Suppose that d = 0. Then II is included in

the center of G, and HC\K=(Q). For a given x^N(K; G), x<£H+K,

let r be the least positive integer (provided by Lemma 1) for which

rx^H+K. Let p he a prime divisor of r, and let y = (r/p)x. py = rx

= h + k for suitable h€zHand k^K. Since His complete and abelian,

there exists hidzH with phi = h; and —phi-\-py = k. Since also

hiGZi(G), -phi+py = p(-hi+y)=k. Let z=-h+y. Since H
CZi(G) and since y = (r/p)x£N(K; G), it follows that z£N(K; G).

If zQH+K, then y = (r/p)xQH+K, contradicting the minimum

character of r. Form the subgroup K"={K, z). K" includes K

properly, and by the maximal character of the latter subgroup there

exists a nonzero h'CLK"r\H. Since z£zN(K; G) we can find an integer

/ and an element k'EiK with h! =tz-\-k'. If p\t, pz^K implies hi'ElK,

contradicting HP\K=(0). Then there exist integers a and b for which

at+bp = l, so that z = atz+bpz. But tz£.H+K implies atz^zH+K

since HQZi(G); and pz(£K. Thus z£.H+K, a contradiction. We
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have established that r = \, xEH+K, and that N(K; G)=H+K ii

d = 0.
Ii d^O, reduce the group modulo Zd(G). Let the images of G, H,

and K be, respectively, G', H', and K'. It can be readily checked that

K' is maximal in G' with respect to the property of being disjoint

from H', that H' is in the center of G', and that H' is a complete

abelian group. Using the case d = 0 above, we have N(K'; G')=H'

-\-K', and a trivial argument now shows that N(K; G) = H+K.

Subgroups which are interpolated into the ascending central series

are normal subgroups, so that H is normal in G, and H/Zd(G) is nor-

mal in G/Zd(G). Hence H/Zd(G) is normal in N(K; G)/Zd(G). More-

over K is normal in N(K; G) so K/Zd(G) is normal in N(K; G)/Zd(G).

Since H/Zd(G)C\K/Zd(G) = (0), and since N(K; G)/Zd(G) =H/Zd(G)
+K/Zd(G), we have proved that the sign + in the last statement

can be replaced by ©.

An immediate result is

Corollary 1. Let a complete group H have an extension to a nil-

potent group G of class d+\ in such a way that Zd(G) EH. If K is any

subgroup of G which is maximal with respect to the property of having

precisely Zd(G) as its intersection with H, then K is normal in G, and

G = H+K.

Corlllary 2. If H and K are as in the theorem and if d = 0, then
N(K; G)^H@K.

Corollary 3. If H and K are as in the theorem and if d = 0, then

N(K; G)/C(K; G)=/(A), the group of inner automorphisms of K.

Proof. Since C(K; G) EN(K; G) and since N(K; G) =H+K, every
element of C(K; G) has the form h+k, where hEH and kEK.

h+k+k' = k'+h+k for every k'EK. Since HEZ^G), k+k' = k'+k
for every k'EK, and kEZi(K). We can thus establish that C(K; G)

= H-\-Zi(K). For kEK, let yk be the inner automorphism yk(x)

=k+x—k for every x£A. Define a map 6 on H+K into J(K) as

follows: B(h+k) =yk. Then it is easy to verify that 6 is a homomorph-

ism on H+K onto J(K) with kernel H+Zi(K).

One could ask whether there is anything to be said if JET is a sub-

group not necessarily complete or interpolated into the ascending

central series. Let (A) be the property of a proper subgroup if of a

group G that mu+v (or, alternately, v+mu)EH where u, vEG and

Cvr\H— (0) implies the existence of gEHf~\C(u; G) with mg = mu+v

(alternately, v+mu). Suppose that G is aperiodic and that H is a

proper subgroup of G with property (A). Then it is easy to prove that
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H is a normal subgroup of G and that D(H; G)=H(ZV\C(u; G),

where the cross-cut is taken over all elements m£G such that u(£H.

H is likewise strongly complete in the sense that the equation nx

= hG-/7 always has a solution in H. Even if G has nontrivial periodic

elements, a strongly complete subgroup II which is included in the

center of G has property (A). The proofs of Lemma 1 and of Theorem

1 can be rewritten to give the somewhat weaker result:

Theorem 2. Let H be a subgroup with property (A) in a group G.

Suppose that there exists a normal subgroup K of G which, as a sub-

group, is maximal among the set of all subgroups (normal or not) which

are disjoint from H. Then G = H-\-K; and if G is aperiodic, G = H®K.
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