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DIFFERENCE EQUATION TO A SOLUTION

OF THE EQUATION OF DIFFUSION1

M. L. JUNCOSA AND DAVID YOUNG

1. Introduction. Let/(x) be a Lebesgue integrable function satisfy-

ing the lc condition (see, e.g., Hardy [3, p. 359])

f    [fix + u) + Six - u) - 2cix)]du = oil)
J 0

for each x in Ogxgl. If a„ = 2/o/(x) sin nwxdx, » = 1, 2, • • ■ , then

00

(1) u(x, t) = ^2 an sin «7rx e"^^1
n=l

is the Fourier series solution in R: 0<x<l, />0, of the partial dif-

ferential equation of diffusion

du     d2u
(2) -:•

dt      dx*

Furthermore, (1) satisfies the boundary conditions u( -f- 0, /)

= u(\ — 0, t)=0,t>0 and as a consequence of §1 and §3 of Appendix

II of [3] it also satisfies the initial condition u(x, +0) =/(x) at every

point of continuity of/(x) in0<x<l as well as the condition u(x, +0)

= (l/2)[f(x+0)+/(x —0)] at every point x where /(x) possesses

these one-sided limits. Moreover, from a slight modification of Hardy

and Rogosinski [4, p. 66] on Abel summability of Fourier series and

from Theorems 270 (due to M. L. Cartwright [l]) and 273 in Ap-

pendix V of [3] it follows that as t—*0 + ,

lim u(x, t) = /(x)

uniformly in any closed interval of continuity of/(x). The uniformity

of the limit goes back to the original theorems of Fejer [2].

Now for the remainder of this note let/(x) be continuous in 0 ^ x ^ 1

except for at most N points at which it may have a finite jump. (Then

all the preceding remarks are still applicable.) Let M be a positive

integer variable, Ax=M-1, and A/ = r(Ax)2. Then if
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M-l

bn = bn(M) = (2/M) £ f(j/M) sin (mcj/M), n = 1, 2, • • • , M - 1,

an analogue of the Fourier series (1)

Af-l

(3) UM(x, t) = £>„ sin wttx[1 - 4r sin2 (wt^M)]'^2/1-
71=1

is an exact solution (see, e.g., [7]) of a partial difference equation

analogue of (2)

,   UM(x, t + At) - UM(x, t)
(4) r ,

= r[UMix + Ax, /) + UMix - Ax, /) - 2t/M(x, t)]

for (x, t), (x+Ax, t), (x —Ax, t), and (x, t+At) in R. It also satis-

fies exactly the boundary conditions  Um(0, t) = Um(1, t)=0, t^O

and  the initial condition  Um(x, 0) =/(x)  for those x in  0<x<l

for which Mx is an integer.

When it converges, the series

OO

(5) Vuix, t) = X c„ sin w;rx[l - 4r sin2 (w7r/2M')]'M2/r,
71=1

where cn = cn(M), w = l, 2, • • • , also satisfies (4) but not, in general,

the corresponding boundary conditions except when c„ = &„ for

w ̂  M— 1 and c„ = 0 for w ̂  A7.

Recent interest in the problem of convergence as M—>oo has re-

sulted in a proof by Leutert [6] of the convergence of (5) to (1) for

the case where 0<r^l/4 and \cn — a„\ —»0 uniformly for n<M and

for /(x) sectionally continuous with one-sided derivatives every-

where. Hildebrand [5] proved convergence of (3) to (1) for 0 <r g 1/2

when/(x) has bounded variation and is continuous except for a finite

number of finite jumps. He had more severe restrictions on/(x) when

r = l/2. With our considerably more general/(x) we shall prove con-

vergence of (3) to (1) for 0<r^l/2 and convergence of (5) to (1)

for allr>0.

2. Two lemmas. Let /3 be an arbitrary, fixed number in 0 </3 < 1

and define

\((2M/ir) sin"1 (^/4r)1'2), r > 1/2,

where (x) represents the greatest integer not exceeding x.

Lemma 1.  Uniformly for all positive integers M and all t^to>0,
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we have, for 0 <r ^ 1/2,

Af-l

(7) E [ 1 - 4r sin2 (nw/2M) \ m'l,T = 0(1)

and, Sor r>0,

k

(8) Z I 1 - 4r sin2 (nir/2M) |tAf2r = 0(1)
n-l

where k is defined by (6).

Proof. Let 0<r^l/2. Then, for «=S<Af/2),

- 1 + 4r sin2 (nr/21t)

M — n
(9) ^ - 1 + 4r sin2-*■ = - 1 + 4r cos2 (nw/2M)

2M

= 4r - 1 - 4r sin2 (nv/2M) g 1 - 4r sin2 («ir/2M).

Using (9) and the inequalities log (1 — z) ^ — z for 0^z<l and

2z/ir^sin z for O^z^tt/2, we have

M-l

E | 1 - 4r sin2 imr/2M) \ M h

^2   E   [1 - 4r sin2 inir/2M)}m /r
n=l

<Af/2) (M/2>

< 2   E e_4Af2'sin2 ("'sao < 2   E e-4"2' = 0(1).

n=l n=l

For the larger range of r, r>0, (8) is proved using the same in-

equalities in the same manner.

Lemma 2. For n^k, r>0, and t^t0>0,

(10) 5 s | [l-4r sin2 inw/2M)]tM2'r - £r"v< | ^C*(»4x4/4M2)<r*,v,rU

M^ere C=max  {l/3, 2r/(l— j3)}  awd

a2=l-max  {7r2/108, (1/3)   [sin-1 )3/4r]2}.

Proof. By the Mean Value Theorem we have, for n^k,

S = nVt\ iM^/nVr) log [l - 4r sin2 (nic/2M)\ + 1 | e~^h

for some | lying between w2 and — iM2/ir2r) log [l —4r sin 2inir/2M) ].

From the elementary inequalities, — z —z2/2(l —z) ^log (1 — z) ^ — z

for 0^z<l, sin z^z for z^O, and sin2 z'^.z2 — zi/3 for \z\ <ir/2,
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-2r/wir\2 -2r /mr\2

l-p\2M/ = 1 - 4rsin2 (mc/2M) \2m)

= -- f-Y U (—Y +    8r2(W7r/2M)4  1 +1
r \mc)  L     \2m)        1 - 4r sin2 (mr/2M) J

(11) /M\2 1
g ( —) — log [1 - 4r sin2 (wtt/2M)] + 1

\mc/    r

g - A(M/mr)2 sin2 (mt/2M) + 1

^ - (2il7/wx)2[(w7r/2M)2 - (l/3)(«ir/2Af)4] + 1

= (1/3)(wtt/2M)2.

The last inequality of (11) yields

(12) f ^ »2[1 - {\/3)(mr/2M)2\.

From (11) and (12) we obtain (10).

3. Convergence theorems.

Theorem 1. For any fixed ta>0 and for 0<rgl/2,

lim  Um(x, t) — u(x, t)

uniformly for O^x^l awd t^to-

Proof. For k = l, 2, ■ ■ ■ , let

h

ak(x, t) = ZAk,n sin M7rx<r"2'2'
71=1

be the arithmetic mean of the first k partial sums of (1). Then

Uk - « + \)ajk, U»S{,
Ak.n   =     <

(0, n > k.

For k as defined in (6) we have

(13) | UM(x, t) - u(x, 0 | £ | £,(x, t) | + | E2(x, t)\+\ E3(x, t) \

where
Af-l

Eiix, 0 = _C (*- - ^*.«) sin nrx[l - 4r sin2 (nir/2M)]<m1";
71=1

(14) *
E2(x, 0 = Z ^*.n sin mttx{ [1 - 4r sin2 (wx/2Af)](Jtf2/''

n-l

- e-^'\,
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and

k

(15) E3(x, t) = E ^*.» sin nirxe-"*'*' - u(x, t).

Let us cover the set of points of discontinuity of /(x) by a set E

which is the sum of a finite number of open intervals, the sum, rj, of

whose lengths is arbitrarily small. Let / be the interval O^x^l.

Then, on I-IE, by the corollary to Fejer's principal theorem on

summability (C, 1) of Fourier series (see Fejer [2, p. 60]), o-t(x, 0)

converges uniformly to /(x). On IE, |crj;(x, 0) — /(x)| ^2F where

F=LUB |/(x)| in O^x^l. Then, for all sufficiently large M we have

2     Af-l

| bn - Ak.n [ = —   E ISU/M) - o-k(j/M, 0)] sin inrj/M)
(16) M  ,_i

< (2/M)[M-o(l) + 2F(nM + N)] = o(l)

uniformly for all n ^ M. Hence, from (16) and (7) of Lemma 1, we have

that the first member of the right-hand side of (13) is o(l) uniformly

for O^x^l and t^t0.

Using |^4*,n| ^ \an\ g4F/x and Lemma 2, we have

k

1 E2(x, t) | ^ (FCfcr3/M2) E w4e-"2aVi = 0(M~2)
n-l

uniformly in Ogx^l and tstt0.

Finally, since for sufficiently large k

,.„, I A".n - on | ^ 2 I      | ck(y, 0) - S(y) | I sin nwy \ dy
(17) J o

<, (4A)[o(1) + 2Ft,] =o(l),

we have

00

\E3(x,t)\ fS o(l)-E^"V' = <'(l)
n-l

uniformly for O^xgl and t *zto, completing the proof of the theorem.

Theorem 2. Let cn = cn(M) in (5) be such that c„ = 0Sor n>k (where

k is defined by (6)) and

(18) lim   | c„ - a„ | = 0

uniSormlySor ni%k. Then,Sor each r>0,
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lim  Vm(x, t) = u(x, t)

uniformly in O^x^l owd /^/0>0.

Proof: We have

| VM(x, t) - u(x, t) | g | E1*(x, t)\+\ E2(x, t) | + | E,(x, t) |

where £2(x, t) and £3(x, t) are defined by (14) and (15) and

k

E?(x, t) = £ (c„ - il4>B) sin mxx[1 - 4r sin2 (mr/2M)]'M''T.
71=1

Using (17) and (18) in the triangle inequality, we get cn—Ak,n = o(l).

Using this and (8) of Lemma 1, we obtain £f(x, t)=o(l) uniformly

for OiSx^l and t^ta>0. From the proof of Theorem 1, we have

£2(x, r)+£3(x, t)=o(l) uniformly for Ogx^l and t^,t0, thus com-

pleting the proof of the theorem.

In the case 0 <r ^ 1/2, Um(x, 0) satisfies the initial conditions on a

set asymptotically dense on O^x^l as A7—>°o. On the other hand,

(18) is not sufficient for Vm(x, 0+) to satisfy the initial conditions or

even be bounded. This is easily seen in the case where cn(M)=an

+ (l/M) sin (wt/2) for w^Af-1 and cn(M)=0 for n\%M. However,

cn = an-\-o(l/M) is clearly sufficient for convergence for t = 0.

Theorem 1 assures uniform convergence of Um(x, t) to u(x, t) for

t^to and O^x^l. However, w(x, t) is real for every (x, /) in R and

on its boundaries, while for l/4<rgl/2 and those (x, t) such that

tM2/r is not an integer, Um(x, t) may be complex. Therefore, we

shall state two more theorems covering a general class of real in-

terpolations on Um(x, t) and Fm(x, t), which include, e.g., bilinear

interpolation. Let Pi, P2, Pz, and Pi be the points at the corners of

an elemental rectangle of area AxAt. Then, if a,(x, t),i=l, • • ■ ,4, are

non-negative functions whose sum is unity and if Wm(x, t)

= XXi at(x, t)Wia(Pi), then we say Wm(x, t) is a four-point inter-

polation on Wm(x, t) satisfying a "maximum-minimum principle."

In our definition we also assume that, for (x, t) on the boundary of

an elementary rectangle, Wm(x, t) is determined solely by interpola-

tion on the two neighboring meshpoints determining the straight-

line segment of the boundary containing (x, t).

Theorem 3. If Um(x, t) is a four-point interpolation on Um(x, t)

satisfying a "maximum-minimum principle," then

(19) lim Vm(x, t) = u(x, t)
M->»
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umformly in O^x^l and t^t0>0. Furthermore, uniformly on I —IE

lim   UM(x, 0) = f(x).

Proof. For any Pi, P2, P3, and P* as defined above we have

4

| Unix, t) - u(x, t) | g E ««■ I UniPi) - m(P<) I
i-l

4

+ E «i I w(P0 ~ «(*, 0 I ■
i-l

Then, (19) follows immediately from Theorem 1 and the uniform con-

tinuity of u(x, /) for t^to. Similarly, if (xi, 0) and (x2, 0) are adjacent

meshpoints such that Xi^x^x2 is in I —IE, then, since Um(xu 0)

=/(x,) and Six) is uniformly continuous on I —IE, we have

| Uuix, 0) - /(*) i fg E «■■ I /(**) - /(*) I = "(!)•
,~i

Similarly, one can prove the following theorem.

Theorem 4. // Vm(x, t) is a Sour point interpolation on Vm(x, t)

satisSying a "maximum-minimum" principle and iS (18) holds, then

lim Vm(x, t) = u(x, t)

uniformly in 0 j£xg 1 o«oJ /^<0>0.
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