
SOME PROPERTIES OF PARTLY-ASSOCIATIVE OPERATIONS

H. A. THURSTON

Introduction.

Summary. Three properties of a group-operation are

(i) it is associative: (xy)z = x(yz);

(ii) it is regular: a — b if ax = bx or if ya=yb; and

(iii) it is reversible: ax = ya = b is solvable for x and y.

These definitions may readily be generalized. For example, the

associative property may be stated as "the two continued products

which can be formed from the same three elements in the same

order are equal (for all values of the elements concerned)." Under a

(y-f-l)-ary operation, v-\-l continued products can be formed from

2^ + 1 elements in order. For any given operation, some, none, or all

of these may be equal. If some are equal, the operation is partly-

associative. If in addition the operation is regular and reversible, then

there are numbers j and k, v being a multiple of k and k of j, such

that the pth continued product is equal to the (p-\-q)th if p is a mul-

tiple of j and q of k. (Partly associative operations, J. London Math.

Soc. vol. 24 (1949) pp. 260-271.) Such an operation is (j, ^-associa-

tive. If j = k = l (that is, if all the continued products are equal) the

operation is, if reversible, that of a polyadic group. (E. L. Post,

Polyadic groups, Trans. Amer. Math. Soc. vol. 48 (1940) pp. 208-

350.)
A fundamental theorem about polyadic groups is that a polyadic

operation can be regarded as the continued product of a group opera-

tion. (Op. cit. pp. 218-219.) The proof of this involves setting up an

equivalence such that an ordered set can replace any equivalent

ordered set in a polyadic product without changing the value of the

product. (Op. cit. p. 217.) The continued-product theorem can be

generalized to apply to (1, k) -associative operations (Theorem H of

the present paper) and the replacement theorem to (j, k)-associative

operations (Theorem E). Other replacement theorems are proved in

part 2. They do not require full reversibility and I have stated them

with only the properties actually required for the proofs. They can be

summed up (in somewhat less general forms than in the text) as

follows:

Let (a, p, y) be either (1, -1, 1), (0, 0, 1), (0, 1, 0), or (1, 0, 0).
Then if *  is a 0- and p-reversible  (j, k)-associative operation, if
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p=p'^a, g=j3, and r = r'=y modulo/, if p+q+r = p' + q + r' =v-{-l,

and if either p or r is congruent to a modulo k, then

*«i • • • ffp/i • • • fqCi ■ ■ ■ cr = *ai ■ ■ ■ apgi ■ ■ ■ gqci ■ • • c,

implies that

*h • • • bp.fi ■ • ■ f„di • • • d^ = *bi • • • bp>gi ■ ■ ■ gqdx ■ ■ ■ dr..

This is also true if g = l (mod k) and p = 0=p' or r = 0=r' (mod/).

Most of the theorems hold not only for elements/*, g,-, but also for

sets of elements, using an analogue of Kronecker multiplication.

The case v = 1 of Theorem B is the well-known result that if, in a

group, ea=a for some a, then xe = x for all x. A set ei ■ ■ ■ e, of ele-

ments such that *«!••■ eyx = x for all x may accordingly be called a

polyadic left-identity. Part 3 of the paper consists of theorems similar

to Theorem B, including the results that if *d • • • e,a=a for some a,

then ei ■ ■ ■ ev is a left-identity; that if d ■ ■ ■ e, is a left-identity and,

m being a multiple of k, the first ret elements are taken from the

front to the back (giving em+i • • ■ evei • • • em), we still have a left-

identity; and that ei ■ ■ ■ e, is a left-identity if and only if e2 ■ • • evei

is a right-identity (that is, *xe2 • • • etei = x for all x).

The "factorizing" of the partly-associative operation into the con-

tinued product of a shorter partly-associative operation may be con-

trasted with the factorizing of a general operation in Theorem 12 of

The structure of an operation, J. London Math. Soc. vol. 27 (1952) pp.

271-279.
Definitions and Notation. A (p + l)-ary operation is a mapping

of a power S'+1 of a set 5 into 5. In this paper v is always finite.

Elements of 5 are denoted by z, y,x, ■ • • in statements which are

true for all selections of these elements from S; and by a, b, c, • • ■

where this may not be so.

Capital letters denote sets of elements.

i,j, k, I, m, re, p, q, r, and v denote integers.

Signs such as \ or * denote operations.

German letters denote equivalences: xq is the set of all elements

y for which xqy.

Frequent use will be made of ordered sets. If q^p, then x\ denotes

XpXp+i • ■ ■ xq; and x£__i denotes the null set. The formula x\ is invalid

if q<p — 1. An element, together with its suffixes, affixes, and so on,

is treated as one entity. For example, a\a denotes ai,9 • ■ ■ ai,q, and

(xjq) denotes (xpq • • • x8q). When the range of the suffix is obvious,

xj is abbreviated to x.
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The product of x° under * is *x° or *x. The continued product of

x%, (i.e. the product of *x° and x"2tl) is *2x, and so on.

If Y are elements or sets of elements of S, then *Y is the set of

all *y for which y<= Yi if Yi is an element, and y,£ F,- if F,- is a set of

elements.

If, given any x°_lt y, and z of S, there is an a of 5 for which *x°,_1ay

= z; then * is l-reversible. We shall consider operations which are /-re-

versible for some value of /; it will not matter which, except that the

extreme case (1 = 0 or l=v) is not enough on its own. This suggests

the definition: * is once-reversible if it is either /-reversible for some /

for which 0 < 1 <v or both O-reversible and v-reversible.

If b = d whenever *a°_1bc = *adc, then * is l-regular.

If v is a multiple of k and k of j, if * is (y-fT)-ary, and if *xv_i*x%,

= Xj_j*X2„ whenever p is a multiple of j and q—p of k, then * is (j, k)-

associative.

1. A generalization of a theorem of E. L. Post.

A. Theorem. If a (v, v)-associative (v-\-l)-ary operation is once-

reversible then it is 0-regular and v-regular.

Proof. If *fa = *ga, let *2fab=f and *cf=g. (If * is Z-reversible

where 0 <l <v, we can suitably choose bi and ci. If not, we can choose

by and Co.)

Then f=*2fab = *2gab = *3cfab = *c*2fab = *cf=g. Therefore * is
0-regular. Similarly, it is ^-regular.

Note. The case v = l is the theorem that in a group ax = b and

xa = b are uniquely solvable.

B. Theorem. If a (v-\-l)-ary (j, k)-associative operation * is either

0-regular or (v — m)-regular, and if m is a nonzero multiple of k, then

*e\a = a implies that *xe'-m+2ei_m+1=x.

Proof. For any/,1_m,

v—m+2 v—m+2     1

*xey       at = *xey       *eyat
2    »-to+2 1   , ., .....

= * xe,       eraf (because * is (j, ^-associative).

Therefore, if * is 0-regular,

y—m+2  I
x = *xey       ey—m+i.

And, for any fl_m,
v—m+2 r—m+2     1

*fxey       a = *fxey       *eya
r—m+2  1

= */*xe„       e„a (because * is (j, ^-associative).
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Therefore, if * is (v — m)-regular, x = *xe"„~m+2el_m+1.

Note. Similarly, if * is (p + l)-ary, (j, k)-associative, and either v-

or rez-regular, and if m is a nonzero multiple of k, then *ae\ = a implies

that *e™e)n_iX = x.

C. Lemma. If * is (v + l)-ary, 0-regular, l-reversible with Kv, and

(j, k)-associative, if p is a nonzero multiple of k, and if d\_v are any

elements, then, for some ep, *xde = x.

Proof. Case (i). 1 = 0. * is now 0-reversible and so, for some ek,

*evde\_1a = a. Therefore *xde\ = x, by Theorem B.

Case (ii). v-k+l^l^v-1. Clearlyp^k, and so v-p + l ^l^v-l.

Therefore the element in position I in the product *epdev_la is one

of the e's—in fact, e;_„+p. For some value of this element the product

is equal to a, because * is /-reversible. Then, by Theorem B (with

m=v), *xde\=x.

Case (iii).

(1) 1 g I g v - k.

Let r be the least non-negative integer for which l^p-\-rk. Put

m — v—p—rk. By (1), l = v — k and so, v — k being a multiple of k,

the least multiple of k not less than / is not greater than v — k.

That is, p+rk^v — k. Therefore k=^v — p—rk = m, and so m = \.

Clearly m=v — p— rk^v— p-\-\, and so v—p^m — 1. Therefore the

formula *d™^ve1I,dlt_la is valid. If r>0, we have, by the definition of

r, p + (r-l)k + l=l. Therefore l-l^p + ir-l)k = rk. And if r = 0

we see from (1) that l — \=rk. Therefore whatever r is, v— p — (I — 1)

= v — p — rk = m. Therefore

(2) v-p-m+l^l.

Now, by the definition of r, l^p+rk. Therefore v — l — v — p —rk = m,

and so

(3) lg,v-m.

From (2) and (3), the element in position I in *^Lj,e^-i a is one of

the e's. Therefore for some e, *d^_pe1pd1m_1a = a. Therefore, by Theorem

B, *xde = x.

D. Lemma. If * is (v + l)-ary, (j, k)-associative, l-reversible with

l<v, and 0-regular, and if p is a nonzero multiple of k, and q a multiple

of j, and if *F°val_v = *Gla, then *b\Fd = *b\Gd.

Proof. By Lemma C, there is an e such that *xae = x. Then
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*bFd = *bFp-i*Fpaed

= *h*Faed (because * is (j, ^-associative)

= *b*Gaed (because *Fa = *Ga)

= *bGp-i* Gaed (because * is (j, &)-associative)

= *bGd (because *xae = x).

Note. The set of all (F, G) such that there is an a for which

*Fa = *Ga is now clearly an equivalence.

E. Theorem. If * is (v + l)-ary, (j, k)-associative, l-reversible with

I <v, and 0-regular, and if q is a multiple of j and p of k, and if *Fp)al_P

= *G°pa, then *b\Fd = *bGd.

Proof. If p9±0, this is Lemma D. If p = 0 we have *F0a = *670a,

and * is 0-regular. Therefore F0=67o. Therefore *bFod = *bGod.

F. Putting j — 1 in Theorem E:

Corollary. If* is (v + l)-ary, (1, k)-associative, and once-reversible,

and if p is a multiple of k, and if *flal_v = *gpa, then *bfd = *bgdfor
any b and d.

Proof. By Theorem A, * is 0-regular, and the conditions of Theo-

rem E are then satisfied.

G. Lemma. 7/* is (v-\-l)-ary, (1, k)-associative, and once-reversible,

if q is the set of all ($, gP) for which p is a multiple of k and for which

there is an a such that *fa = *ga, and if, for i from 0 to k, /,-,„,. q giiPi,

then*rf%iPo ■ ■ ■ f^iPt(\*rgo,p0 ■ • • gt,Pt where r is the greatest integer for which

k+T.pi^rv+1.
o

(The reason for taking this value of r is that there are k+ X]o P< ele-

ments in fSitB ■ ■ • fl,Vk, and rv + 1 elements in an r-fold continued

product.)

Proof. For any a], where q=(r + l)v + l— k— 2^,1 Pu we have

*r+V /°
*    Jo.po " - " 7*.j>*a

r+l  0       0
= *    go.pji.pi ■ • • a (by corollary F)

r   0 0

= * go,pt-i*go,pJi.Pi • • • a        (because * is (1, ^-associative)
r   0 0

= * go,pll-i*go.pl)gi.p1 • • • a (by corollary F)

and so on until
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r  0 0

= * go,p0 •••*••• gk,p a
r+1  0 0

= *    go.Pt • - • gk,Pka.

H. Main Theorem. If * is an (nk-\-l)-ary, (1, k)-associative, once-

reversible operation on S, then there is a (k, k)-associative (k-\-l)-ary

operation \ on a set U containing S such that \nx = *x for every x of
Snk+\

Proof. Let q be as in Lemma G, and let T be

U    S™*+7q.
n>m=S0

We define an operation f on T as follows. Let tk be any £ + 1 ele-

ments of T. t0 will be of the form (x^q, where mi is a multiple of k.

Then h is of the form (xJJ£+1)q, where m2 — 1 is a multiple of k. And

in general tt is of the form (x^^q, where tw, — (i— 1) =j%k. Now put

■|-^=(*rxJJ,i+1)q, where r is the greatest integer for which rv^mk+i.

Then f is a relation on Tk+1 into T. To be an operation on T, it must

be a mapping. That is: if, for every i, (x™'+1)q = (y^+^q, then

(*Txmk+1)^ = (*'ymk+1)a; for, if not, ft* would not be uniquely de-

termined. Lemma G, however, ensures that this is so. Therefore f is a

(& + l)-ary operation on T.

If every/f = 0, then i, = Xiq and so, from the definition of f. t^tQ

= (xj)q. Then

(1) t   Xnk(\   =   (*Xnk)q.

Now

ft*-ift2* = (**Xmk*qxZkIt+1 )q (for some p and q)

= (*     xmu+1)q      (because Wi + 1 = jkk + k — 1 + 1 and so is

a multiple of k)

= tt<2*.

That is, f is (k, k)-associative.

All we have to do now is to replace T by a set which contains S,

and f wih have all the required properties. (This is easy because,

although T does not contain S, it contains, as we shall see, the set

of all {x} for all elements x of S, where {x} denotes the set whose

only element is x.)

By Theorem A, * is 0-regular. Therefore x=y if and only if xq=yq.

Therefore xq={x}. Let U be SVJ\Jn>m>0Smk+1/q: that is, T with x
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in place of xq everywhere. Because xq = {x}, we can define f as a

(& + l)-ary operation on U by putting tMt = t/2i where U is {x,} if «,-

is Xi, and t{ is Ui if not. The new operation is clearly isomorphic to

the old, and is therefore (k, k)-associative. (1) becomes

n o o
T   Xnk  —      Xnft.

Note. Although the main theorem is stated only in terms of asso-

ciativity, and with the minimum reversibility and regularity re-

quirements needed for the proof, much the same result would have

been obtained if we had restricted our attention to regular reversible

operations (i.e. operations which are /-regular and /-reversible for

every /), for it is clear that if * is regular and reversible, then so is f-

(Indeed, the importance of (j, k)-associativity is that it is the general

form of associativity for a regular reversible operation.) This is the

point of the equivalence q: by identifying those elements of T which

necessarily behave alike under the operation, it preserves regularity.

If we now neglect regularity and reversibility, and simply require f

to be (k, k) -associative, we can generalize the associativity of * from

(1, k) to (j, k), by replacing q by the identity t. The restriction j = 1

comes only in the application of Lemma G; but if q = t, the unique-

ness of t/jt is obvious, and Lemma G is unnecessary. The theorem is,

of course, no longer so closely analogous to the theorem of E. L. Post

which inspired it. Stated in full, it is:

If * is a (j, k-)assodative (v-\-l)-ary operation on S, there is a set U

containing S and a (k, k)-associative (k + l)-ary operation f on U such

that t"/*x = *x for every x of S"+l.

2. Replacement theorems.

I. Theorem. If (i)  * is (j, k)-associative, l-reversible, and Irre-

versible, (ii) *a°F„1_r_1c°_p = *aGi_r_1c, (iii) p, q, and r are multiples of

j and either p or r—p is a multiple of k, and (iv) l^v — p — 1 and I'^r

—p + 1, then for any &° and d°r_Q for which r^.q^.0,

(1) *bFd = *bGd.

Proof. b° is not null because q^O. * is /-reversible, where l^v

— p — 1. Therefore, for some e\_p,

(2) bq = *ea.

Similarly, for some hl_T+p,

(3) d0 = *ch.
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Therefore

(4) *bFd = *b0q-i*eaF*chdl-q.

Now (4) is of the form "q, 2v+q — r": that is, the second and third

operation signs come after q elements and after 2v+q — r elements

respectively in the formula. Now q, 2v+q — r, v—p-\-q, and v+q — r

are all multiples of j. If r — p is a multiple of k, so is (2v+q — r)

— (v — p+q). Then, by the theorem in A note on continued products,

J. London Math. Soc. vol. 27 (1952) pp. 239-241, (4) is equal to a
continued product of the form "q, v — p+q"; that is, to

(5) *bl-i*e*aFchdl-q.

If, however, it isp which is a multiple of k, then so are q —(v — p+q)

and (2v+q — r) — (v+q — r). (4) is now equal to a continued product

of the form "v+q — r, v — p+q"; that is, to

,ts i°      1       "-r+1     T^  , J1
(6) *bq_ie,-r*ey-p  *aFchdr-q.

Now we may use (ii) to replace *aFc by *aGc in (5) or (6), which

is the same thing as replacing F by G. Reversing our argument, either

of these is clearly equal to (4) with F replaced by G, and this, by (2)

and (3), is equal to *bGd.
J. A crucial point in the proof of Theorem I was the replacement

of bq and d0 by products in order to make the continued-product

theorem applicable. If Ft is a unit set, Fi = {/} say, then (2) can be

replaced by the statement: *e\_v_xa%f=f, provided that (iv) is modi-

fied to read l = v—p — 2. Then if p + 1 (instead of p) is a multiple of

/, and so on, the proof goes through as before. Writing p instead of

p + 1, and ap and so on in place of ap_i and so on, we have the follow-

ing result:

Theorem. If (i), (hi), and (iv) are true, if *apFl_Tc°_p = *aGc, if

Fi is a unit set, and if r=jtq, then

*b\Fdl-q = *bGd.

K. Similarly,

Theorem. If (i), (iii), and (iv) are true, if *avFl_Tc)_P = *aGc, if

F,-., is a unit set, and if q—^0, then

*b°qFdr-.q = *bGd.

L. Combining J and K, we have
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Theorem. If (i), (iii), and (iv) are true, if Fi and F„_r+i are unit sets,

and if *aPFl_r+ic]_P = *aGc, then

*bXqFdr\ = *bGd.

M. If, in J, p — 0, the replacement of / by *eaf is unnecessary.

Then Fi need not be a unit set. Moreover, if * is g-regular we can

prove a converse:

Theorem. If * is (j, k)-associative and l-reversible, where Z=r+1,

and if r is a multiple of k and q of j, then

(1) *Fr-Jr = *Gc

implies that

(2) *b\Fdl^q = *bGd.

If, in addition, * is q-regular, then (2) implies (1).

Proof. Let d0 = *chy+1. Using this, associativity, and (1),

*bFd = *bF*ch£r-q

= *b*Fchdl-,

= *b*Gchdl-q

= *bG*chdl-.q

= *bGd.

Conversely, if (2) is true and * is g-regular, then

*bF*chdr-q = *bG*chdr-q.

Therefore

*b*Fchdl-q = *b*Gchir-q.

Therefore

*Fc = *Gc, because * is q-regular.

N. Similarly,

Theorem. If r is a multiple of k and q of j, and if * is l-reversible

where l^v — r — l, then *a°F=*aG implies that *bqFd = *bGd; and if

* is also (p+q — r)-reversible, the latter implies the former.

3. Identities.

O. Theorem. If a (v+l)-ary (j, k)-associative operation * is either

0- and v-regular or 0- and m-regular or (v—m)- and v-regular, or
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(v — m)- and m-regular,  where m is  a nonzero multiple of k,  then

*ea = a implies that *ex = x and *ae = a implies that *xe = x.

Proof. By Theorem B,*ea = a implies that *xe'"m+2ej_m+i=x which,

by note B, implies that *ex = x. Similarly for the second part.

Corollary. If a (j, k)-associative operation * is 0- and v-regular,

then *ea = a implies *ex = x, and *ae = a implies *xe = x.

Proof. Put m=v in the theorem.

P. Theorem. If a (j, k)-associative operation * is 0- and v-regular,

and if m is a multiple of k, then *ae = a implies that *xe™+1em = x,

and *ea = a implies that *e"~m+1e\_mx = x.

Proof. If m = 0, this follows from corollary O.

If m^O, then *emem_iX = x, by note B. Therefore

m   1

ev e,n = em.

Therefore

*xe„    em = x by Theorem O.

Similarly for the second part.

Q. Theorem. If a (j, k)-associative operation * is 0- and v-regular,

and *em_1xe™+1 =x, then *xem-ie0e™+1 =*e°_ie„e"j"i1x = x. //, in addition,

m is a multiple of k, then *ere™^xem_iea*=x.

Proof. *em^ie0e™+1 =e0. Therefore, by Corollary O,

(1) *xem_ie0e»     = x, and

0 m+l

Cm—lCyCy €p.

Therefore, by Corollary O,

0 m+1

(2) *em-ieve,^i x = x.

Putting *e,eyn^xem_1eo in place of y in the equation y = *e^_iye™+1,

we have

m+l      1 0 m+l      1 m+l

*eyep_i xem-i^o = *em-i*evev-i xem~ieoev
2  0 m+l      1 m+l

= * em_ie,,e„_i xem-ieoe,
1 m+l

= *xem-ieoe, (by (2))

= x (by (1)).
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Corollary. If k = l and *e0xel = x, then *axe06 = *ae0xb for any

a and b.

Proof.
2

*axe0b = *a*eoeyey^ixe0b       (by (2) with m = 1)

= *aeo*eyey^ixe0b

= *aeoxb      (by Theorem Q with m = 1).

University of Bristol

TWO THEOREMS ON FINITELY GENERATED GROUPS

EUGENE SCHENKMAN

Let 67 be a group generated by a finite subgroup 77 and an element

b of finite order. If 77 commutes elementwise with b (for this we shall

write [h, b]=e for every hEH where [h, b] designates hbh~lb~l),

then clearly G is finite and b is in the center of 67.

We consider here the case where, for every hEH, [[h, b]b] =e, and

prove the following theorem:

Theorem. Let 67 be generated by the finite subgroup H and the element

b of finite order and, for every hEH, let [[h, b]b]=e. Then G is finite
and b is in the nil radical of 67.

Proof. For i = l, 2, • • • , n let hi be the elements of 77. Then

h^bhi are all the conjugates of b; for bhrxbhb~x = h~xbh by virtue of
the hypothesis [[h, b]b]=e.

It follows from the fact that a finite set of conjugates generate a

finite normal subgroup (cf. [l]) that b is contained in a finite normal

subgroup K of 67. But 77 is finite and hence so also is G/K; and then

finally 67 is finite.

Furthermore since b is in the center of K, b is in the nil radical of 67

as was asserted.

We can deduce another result from the fact that \[g, b]b]=e for

every g£67 implies that b is in the center of a normal subgroup of 67.

Theorem. Let G be a finitely generated group with the property that

if bi, ■ ■ • , bn are the generators of G, then \[g, &<]&,] =efor every gEG

and for i = l, 2, • • • , n. Then G is nilpotent of class at most n. If

furthermore the bi are of finite order then 67 is finite.
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