
A TRANSFORMATION FOR S-FRACTIONS1

FRED M. WRIGHT

1. Introduction. Stieltjes [l]2 has discussed the correspondence be-

tween certain formal power series,

(1.1) Q(W)   =   }Z HnW"+\
n-0

and ^-fractions,

CiW       C2W cmw
(1.2) Q(w)-—      •••       -

1   +   1    + +11+

where e^O, i=\, 2, • • ■ , m, or i= 1, 2, • ■ • , according as the 5-

fraction terminates with the mth partial quotient or does not termi-

nate. The correspondence (1.2) is characterized by the condition that

Q(w) and the 5-fraction satisfy the formal power series identities

Ci(w)
Q(w) - —7— = (-l)'cic, • • • Ci+iW'+1[l + Ay.iW H-]

Dj(w)

(j = 0, 1, • • • , m - 1),

,  N      Cm(w)

Dm(w)

or

Cj(w)
(?(«0 ~  n,  >   = (~l)y<Vi ■ • • <m»ftl[l + *i.iw H-]

Dj(w)

(j = 0, 1, 2, • • • )

according as the 5-fraction terminates with the mth partial quotient

or does not terminate, where Cj(w) and Dj(w) denote the jth numer-

ator and denominator, respectively, of the 5-fraction. The cor-

respondence (1.2) relates to any 5-fraction a unique formal power

series (l.l^known as its corresponding power series. A sequence of

numbers {p.n}  (n = 0, 1, 2, • • •) such that the formal power series
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(1.1) is the corresponding power series of an 5-fraction will be called

an 5-sequence. If {pn} (n = 0, 1, 2, • • • ) is an 5-sequence, the

5-fraction expansion of the formal power series (1.1) determined by

(1.2) is unique.

A sequence of real numbers {yu„} (n — 0, 1, 2, • • • ) is called a

Stieltjes moment sequence if there is a monotone nondecreasing

function g(t) on the interval 0=/<<» such that

tHg(t) (n = 0, 1, 2, • • • ).
o

A sequence of real numbers {p,n} (n = 0, 1, 2, • • • ), not all zero, is a

Stieltjes moment sequence if and only if it is an ^-sequence such that

the coefficients ct in (1.2) satisfy the conditions Ci>0 and c<<0 for

i = 2, 3, • • • , m or i = 2, 3, ■ ■ ■ according as the 5-fraction termi-

nates with the mth partial quotient or does not terminate.

A sequence of real numbers {#„} (« = 0, 1, 2, • • • ) will be called a

monotone Hausdorff moment sequence if there is a monotone

nondecreasing function g(t) on the interval 0 = 2=1 such that

Mn =  f   t»dg(t) (n = 0, 1, 2, • • • ).
J o

H. S. Wall [2] has shown that a sequence of real numbers {p,n}

(« = 0, 1, 2, • • • ), not all zero, is a monotone Hausdorff moment se-

quence if and only if the 5-fraction expansion of the formal power

series (1.1) is of the form

riw     r2w      (1 — r2)r3w     (1 — r^rtw

r -T" -    1    -    1    -
(1 — rm_i)rmw

where

U > 0;       0 < r< < 1, i = 2, 3, • • • ,m - 1;0 < rm g 1

or

fi > 0;       0 < fi < 1, i = 2, 3, • • • ,

according as the 5-fraction terminates with the mth partial quotient

or does not terminate.

In §2 we consider simultaneously the problems of embedding a

given 5-sequence {jun} in an 5-gequence {X0, Xi(=ju0),X2(=jui), • • • }
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and of determining when a given 5-sequence {X„} is such that the

sequence {ju0(=Xi), pi(=X2), • • • } is also an 5-sequence. The con-

ditions developed are in terms of certain parameters which enable

us to obtain the S-fraction expansion of the formal power series

P(w) = Er=o X„W+1 from the 5-fraction expansion of the formal

power series Q(W)= E^-o M»^"+1 in case P(w)=\0w+wQ(w) and

vice versa.

In §3 we apply the 5-fraction transformation theorem of §2 for

terminating 5-fractions to the problem of extending backward a

given Stieltjes moment sequence {li„} such that the S-fraction ex-

pansion of the formal power series (1.1) is terminating. In §4 we indi-

cate how the results proved in §3 can be used to prove the basic

theorem relative to the first backward extension of a given monotone

Hausdorff moment sequence {fin} such that the 5-fraction expansion

of the formal power series (1.1) is terminating.3 H. S. Wall, [3] and

[4], has derived some results relative to the problem of extending

backward a given Stieltjes moment sequence {/*„} such that the S-

fraction expansion of the formal power series (1.1) is nonterminating.

The author has obtained and extended somewhat the principal re-

sults of [3 ] relative to the problem mentioned by using the 5-fraction

transformation theorem of §2 for nonterminating 5-fractions.4

2. The transformation theorems. We shall need some information

relating the number of partial quotients in the 5-fraction expansions

of the formal power series

(2.1) Q(w) = E M»w«+l,
n-0

CO

(2.2) P(w) = E^w"+1
n-0

in case both (2.1) and (2.2) are the corresponding power series of

5-fractions and their coefficients are related by

(2.3) X„ = ju„_i (« = 1, 2, • • • )•

Here, as well as subsequently in this paper, we shall for convenience

at times allow the partial quotient 0 ■ w[\ to be joined to a terminating

5-fraction.

3 The referee has indicated an alternate and somewhat more direct method for ob-

taining the results of §4. The method used in this paper for obtaining these results is

given to show how they follow from results obtained in §3 and hence from the 5-frac-

tion transformation theorem of §2 for terminating 5-fractions.

* Bull. Amer. Math. Soc. Abstract 60-4-516.
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We shall use the following lemma. It is to be noted that the hy-

potheses of this and other lemmas in this section are at times slightly

weaker than the assumption of an ^-fraction expansion for a given

formal power series (2.1) or (2.2). The principal merit of such

weakened hypotheses is that the results of these lemmas are equally

applicable to the discussion of both terminating and nonterminating

^-fractions.

Lemma 2.1. If

CiW        C2W C2kW
(2.4) Q(w)~-     -      •••       -•

1   +   1    + +1

(d * 0; i = 1, 2, • • • , 2* - 1),

and if a power series (2.2) with coefficients satisfying (2.3) is related to a

continued fraction

(0) (0) (0)
ai  w      a*  w a2k+2w~~T~ +     1      + '    ' +       1       + '    "'

which is either terminating with at least (2A + 2) partial quotients or

nonterminating, by the formal power series identity

_,    . -A 2*4-1 W (0)    (0) (0)        2*4-2 N (0) ,

P(W'   ~        ftn     ,    ,    =   ~  "1    °!      '   "  -   <*2*+2W [1  + g2k+l,lW +•••],
£2*+l («0

where A2k+i(w) and B2t+i(w) denote the (2A + 1)/A numerator and de-

nominator, respectively, of this latter continued fraction, then

(0)    (0) CO)
ai a2   • • • a2k+2 — 0.

Proof. Let Cj(w) and Dj(w) denote the jth numerator and de-

nominator, respectively, of the continued fraction in (2.4). Since

P(w) = Xqw + wQ(w),

we have that

|~     ,   C2k(w)~\      A2k+i(w)
w   X01-—-

L D2k(w)J      B%+1(w)

r A2k\i(w)-\       r c2k(w)~i
=    P(w)-—-   — w\ Q(w)-

L B™+l(w)j lVK D2k(w)J

(0)  (0) (0)     n+2T (0)
= - «i «!   • • • a2k+2w      [1 + gtk-n.iw + • • • J.
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Since  the  constant  term  in  both  the  polynomials B$+l(w)  and

D2k(w) is 1, it follows then that

w[koD2k(w) + C2k(w)]B2k+i(w) — An+i(w)D2k(w)

(0)      (0) (0) ik+i r      ,        2k+3

= — ai  a2   ■ ■ ■ a2k+2w       + [ \w       + ■ ■ • .

Therefore

(0)    (0) (0)
Hi  H)    • • • a2k+2 — U

since the coefficient of w2k+2 on the left side of this last formal power

series identity is 0.

In a similar manner we have

Lemma 2.2. 7/

aiw     a2w a2k+iW

(2.5) P(«0~—     —      •••       -=^-
1   +   1    + +       1

(a{ * 0; i = 1, 2, • • • , 2*),

and if the power series (2.1) with coefficients satisfying (2.3) is related

to a continued fraction

f0) (0) (0)
Ci   w c2   w C2k+iW

1     +      1      + '    '+       ~ +

which is either terminating with at least (2k + V) partial quotients or

nonterminating, by the formal power series identity

_,    , Cu(w) (0)   (0) (0)       2fc+lN    ,    ,(0) -.
Q(w)-T^rr^ = Ci °2   ''' c2*+iw     Li + «2*+i.iw + • • • J,

Dn(w)

where C2t(w) and D{2t\w) denote the 2kth numerator and denominator,

respectively, of this latter continued fraction, then

(0)   (0) (0)
Ci   Ct    ■ • ■ C2k+i = U.

From Lemma 2.1 and Lemma 2.2 we have at once the following

theorem for terminating 5-fractions. In the corresponding theorem

for nonterminating 5-fractions, which is also an immediate conse-

quence of Lemmas 2.1 and 2.2, the index k of the following theorem

is replaced by «.

Theorem 2.1. If (2.4) holds, and if a power series (2.2) with coeffi-

cients satisfying (2.3) has an S-fraction expansion, then this S-fraction
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Aas either 2k or (2A + 1) partial quotients. Conversely, if (2.5) holds,

and if the power series (2.1) with coefficients satisfying (2.3) has an

S-fraction expansion, then this S-fraction has either (2k — 1) or 2k

partial quotients.

We now proceed with our development of the transformation

theorems. We shall use the following lemma.

Lemma 2.3. Suppose the formal power series (2.1) is related to the

terminating continued fraction

CiW      c2w c2kw
(2.4)'      -     -      • • ■      -      (a\ + 0; • - 1, 2, • • • , 2A - 1)

1+1-4- +1

by the formal power series identities

Q(w) - -^ = (-l)'eic • • • cmw»l[l + hj,iw +■■•]
Dj(w)

(j = 0, 1, • • • , 2k - 1),

where Cj(w) and Dj(w) denote the jth numerator and denominator, re-

spectively, of (2.4)'; moreover, suppose the formal power series (2.2)

is related to the terminating continued fraction

atw     a2w a2k+iw .
(2.5)'      -     -      •••       - (ai^0;i= 1, 2, • • • , 2k)

1   +   1+ +1

by the formal power series identities

Aj(w) r
P(u>) ~ —-— = (-l)'aia2 • • • a]+iw'+1[l + gJAw + • • • J

Bj(w)

(j = 0, 1, • • • , 2k),

where Aj(w) and Bj(w) denote the jth numerator and denominator, re-

spectively, of (2.5)'. Then X„=ju„_i (n = \, 2, • • ■ ,2k) if and only if
there is a set of parameters (gi, g2, ■ • ■ , g2*4-i) satisfying

(2.6) gi^O (i=l,2,---,2k);g2i+i?±l(j=l,2,--,k-l)

and in terms of which (2.4)' and (2.5)' have the forms

glgiW        gigsW        (1 - gz)g*W        g4gjW        (1 ~ gs)g6W

(2.7) »    -     1    +--T—-     1    +"      1      "-'
g2k-2gu-iw      (1 — g2k-i)g2kw      gng2k+iw

-     1      + i --—T
and
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glW        giW        g2(l - g3)w        g3gjW        gj(l ~ gt)w        gjgtW

1     -     1    + 1 -        1       + 1 -        1      +
(2.8) s

g2*-2(l — gn-i)w      g2k-igikW      g2ib(l — g2k+i)w

+~   ~r   ~-~~i   +~   ~r~
respectively.

Proof. From the formal power series identities

r     ,   Ci(w)l      Ai+i(w)

L Di(w)A      Bi+i(w)

r Ai+i(w)-\       r ctwn
=    P(w)-— w\ Q(w)-

L Bi+i(w)j r Di(w)\
f      00 00 \

- \ Ex»w"+1 - wE MnW"+1> (i = 0, 1, 2, • ■ • , 2k)
\ n-l n-0 /

it follows that

w[KoDi(w) + Ci(w)]Bi+i(w) - Ai+i(w)Di(w)

(r Ai+i(w)l T Ci(w)~\
= Di(w)Bi+i(w)\\ P(w) - -^ \-w\ Q(w) - -^

(L Bi+i(w)A        L Di(w)A
00

- E (X» ~ Mn-i)w't+1} (i = 0, 1, 2, • • • , 2£).
n=l ;

Since for each integer i (i = 0, 1, • • • , 2k — 1)  the constant term in

both of the polynomials Dt(w) and Bi+i(w) is 1, we then have that

w[\oDi(w) + Ci(w)]Bi+i(w) - Ai+i(w)Di(w)

= {(-l)i+1[(aia2 • • • ai+2) + (dc2 • • ■ ci+i)]wi+2

(2 10) M
+   [   W+3 +••}- Di(w)Bi+i(w) E (Xn - Hn-l)w»+l

n=l

(i = 0, 1, • • • , 2k - 1).

Suppose that X„ = fin-i for n = 1,2, • • • , 2k. Then for each integer i

(i = 0, 1, • • • , 2/fe-l) the coefficient of a/i+2 on the right side of (2.10)

is (-l)i+1 [(aia2 ■ • • ai+2) + (ciC2 ■ ■ ■ ci+i)]. If i = 2j (j = 0, 1, • • • ,

£ — 1), the coefficient of wi+2 on the left side of (2.10) is 0, whereas if

i = 2j+1 fj = 0, 1, • • • , k — 1), the coefficient of wi+2 on the left side

of (2.10) is

[(cic3 ■ ■ ■ c2j+i)(a2ai ■ ■ ■ 023+2)].
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Therefore

[(aia2 • • • a2j+2) + (cic2 • ■ • c2)+i)] = 0

(j = 0, 1, ■ • • , A - 1),

[(aia2 • • • a2,+3) + (cic2 • • • c2j-+2)]

= (cic3 ■ ■ ■ c2,+i)(a2a4 • • • a2,+2)       (j = 0, 1, • • • , k — 1).

Using the parameters (gi, g2, ■ ■ ■ , gn+i) given by

gi = «i,

C1C3 ■ ■ ■  C2j+i

g2,-+2 =-      0 = 0, 1, ■ • • , A - 1),
(2.12) «i«.-'•«*+!

C2C4 * ' ' C2J+2

gtj+s =-    (i = 0,1, • • •, k - 1),
a2a4 • • • a2/+2

we have at once from (2.11) that

ai = gi,        at = — g2,

02ft-l = g2j(l — g2,+l) (j =  1, 2, • • •  , k),

a2j+2 = — g2,+ig2,-4-2   (j = 1, 2, • • • , A — 1);

moreover, from these formulas and (2.11) it follows that

C\ = glg2,

c2j = — g2;g2/+i (j = 1, 2, ■ ■ ■ , A),

C2j+l = (1 — g2,+l)g2)+2 (j = 1, 2, ■ ■ ■ , k — 1).

Conversely, suppose that there is a set of parameters (gi, g2, • ■ ■ ,

g2*+i) satisfying (2.6) and in terms of which the continued fractions

(2.4)' and (2.5)' have the forms (2.7) and (2.8), respectively. Then

one can show by induction that these parameters are related to the

coefficients (ci, c2, • • • , c2k) and (au a2, ■ • • , a2k+i) in (2.4)' and

(2.5)', respectively, by (2.12). It can then be shown by induction

that these coefficients are related by (2.11). Using the formal power

series identities (2.10) and (2.11), we can show by induction that

X„ =/zn_i for » = 1, 2, • • • , 2A.

This completes the proof of Lemma 2.3.

From Lemma 2.3 we have the following transformation theorem

for terminating 5-fractions. In the corresponding theorem for non-

terminating S-fractions, which is an immediate consequence of Lemma

2.3, the conditions of the following theorem must hold for every

index A; therefore, a statement of our result in this case is obtained
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by replacing k by °°.

Theorem 2.2. Suppose that (2.4) and (2.5) hold. Then (2.3) holds

if and only if there is a set of parameters (gi, g2, ■ ■ ■ , g2k+i) satisfying

(2.6) and in terms of which the continued fractions in (2.4) and (2.5)

have the forms (2.7) and (2.8), respectively.

Proof. The necessity of the above conditions for (2.3) to hold is

an immediate consequence of Lemma 2.3.

Suppose, then, that there is a set of parameters (gi, g2, ■ • ■ , g2k+i)

satisfying (2.6) and in terms of which the continued fractions in

(2.4) and (2.5) have the forms (2.7) and (2.8), respectively. From

Lemma 2.3 it follows that

Xn = iin-i (n = 1, 2, • • • , 2k).

From (2.9) for i = 2k we then have that

w[\oD2k(w) + C2k(w)]B2k+i(w) - A2k+i(w)D2k(w)

= - Dik(w)B2k+i(w)   E    (x» - n„-i)wn+1.
n=2fc+l

The expression on the left side of this formal power series identity is

a polynomial in w of degree Jess than (2&+2). Therefore, using

the fact that the constant term in both of the polynomials D2k(w)

and B2k+i(w) is 1, we can show by induction that

X„ = Mn-i    (n = 2k + 1, 2k + 2, ■ ■ ■ ).

This completes the proof of Theorem 2.2.

3. An application to the backward extension of a Stieltjes moment

sequence. From Theorem 2.2 we have at once the following lemma.

Lemma 3.1. The correspondence

" CiW        C2W CikW
(3.1) E/vz0n+1~-     -      •■•      -

t-% 1   +   1   +        +1

(a > 0; d < 0, i = 1, 2, • • • , 2k - 1; c2h = 0)

implies the correspondence

" aiW     a2w fl2i+iw
(3.2) Xo!d + id2j/j»mi"+1~— . —      •••   .  —:—

n=0 1     +     1      + +1

(ai > 0; at < 0, t = 1, 2, • • • , 2k; a2k+i ^ 0)

if and only if (3.1) has the form
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^ _,, glg2W gigiW (1 - g»)g*V> gigiW (1 - gs)g6W
y, unwn+i ~-   —■—   —■——   -    -

n=0 1 - 1        + 1 " 1        + 1

(3.3) g2*-2g2*~lW (1   —  g2k-l)g2kW g2kg2k+lW

-""-       i       +~    ~T    ~-~   1
where

gx = Xo, gi > 0 (i = 1, 2, ■ ■ • , 2A + 1),

(3.4) g2i+1 > 1 (j = 1, 2, • • • , A - 1),

g2*+i ^ l;

ira <Ats case, (3.2) Aas the form

" giro     g2w     g2(l - g3)w      g3g4w
Xow + w y, unwn+1 ~ —-     -

„-o 1   -    1   + 1 -       1

g4(l - gt)w      glgtW

+       1       -    1   +
(3.5)

g2*-2(l   —  g2ft-l)w g2k-lg2kW

+ "       i        '-" ~T
g2*(l   -  g2*+l)w

+ _ 1

From Lemma 3.1 we have at once the following theorem.

Theorem 3.1. A Stieltjes moment sequence

(3.6) {Mn} (n = 0, 1, 2, •••)

such that

,„   „ A CiW        C2W C2*_iW(3.7) 2J pnwn+1 ~ —     -      •■•       -
„=0 1   +   1    + +1

(c< j* 0; t = 1, 2, • • • , 2A - 1)

cannot be extended backward once.

From Lemma 3.1, as well as Theorem 3.1, we have the following

theorem.

Theorem 3.2. If (3.6) is a Stieltjes moment sequence such that

,.  ON A CiW       c2w c2kw
(3.8) >_. unwn+i ~-• • •      -

^ 1   +   1   +        +1

(d * 0; (' = 1, 2, • • • , 2A),
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then

(3.9) {Xo, Xi( = Mo),X2( = Mi), ••• }

is a Stieltjes moment sequence if and only if

(3.10) X„ £   - (^ + ^ +  • • •  +    **•••»»-*);
\C2        C2C4 C2C4 • • • c2k  /

moreover, in this case, (3.9) can be extended backward once if and only if

equality holds in (3.10).

Proof. Suppose that X0 is any real number satisfying (3.10). One

can show by induction that the relations

gi = X0,    gigi = ch (-iagij+i) = C21 (/ = 1, 2, • • • , k)

(* — gii+i)ia+2 = c23+i (j = 1. 2, • • • , k - 1)

can be solved for (gi, g2, • • ■ , g2k+i) and that these numbers are given

by

1                            c2
gi = Xo,        g2 = — Xo,        g% =-Xo,

Ci Ci

(/C2Ci •  •  •  C2j_2\

gv = <[-)
vViC3 • • •  C2j-l/

.[•>. +(fi+sg+ ... + "■•   '•-)])"
(3.11) L \c2      c2Ci c2c4 ■ ■ ■ c2j-2/J)

(j = 2, 3, • • • , k),

(C2Ci ■ ■ ■ C2j \
-)

C1C3 ■  ■ ■  C2j-i /

[(C\          C1C3"                                C1C3 •   ■   ■   C2,_3\~]

Xo + I-1-r • • • H-J
\C2         C2Ci                            C2Ci ■ • • C2j-2/J

(j = 2, 3, • ■ • , k).

Since the numbers

(gi, gi, ■ • • . gik+i)

given by (3.11) satisfy (3.4), it follows from Lemma 3.1 that (3.9)

is a Stieltjes moment sequence. Moreover, since

gik+l   =   1

if and only if equality holds in (3.10), we have from this result, as
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well as (3.5) and Theorem 3.1, that (3.9) can be extended backward

once if and only if equality holds in (3.10).

The converse is immediate.

This completes the proof of Theorem 3.2.

4. An application to the backward extension of a monotone Haus-

dorff moment sequence. We shall indicate here a proof based on re-

sults of §3 for the following theorem; in the corresponding theorem

for nonterminating 5-fractions, the index A of the following theorem

is in effect replaced by + ».

Theorem 4.1. If

(4.1) M (n = 0, 1, 2, •••)

is a monotone Hausdorff moment sequence such that

™ r\W      r2w      (1 — r2)r3w      (1 — r3)r4w
2-, PnWn+1 <~-

n-0 1—1— 1 — 1 —

(4 2) (1 ~ r2k-i)r2kw

CiW      c2w c2kw

~t+t + ' ' + ~r
(d ?* 0; i = 1, 2, • • • , 2A),

then the sequence

(4.3) {Xo, Xi( = w),X,( = /i1), • ■■ }

is a monotone Hausdorff moment sequence if and only if

(Ci C1C3 ClC3 •  ■  •  C2k-i\
(4.4) Xo g - (-1-[-•••+—-).

\C2       C2C\ C2Ci ■ ■ • c2k  /

Moreover, in case (4.4) holds, then

" SlW        S2W        (1  — S2)SSW        (1  — Si)SiW
y. x„w+i ~ —   —   —■-•   -
n=„ 1     -      1     - 1 - 1

,„   „. (1 — S2k)s2k+iW

(4.5) _-

aiw     a2w a2k+iw

T + T + ' " +    i
(at * 0; i = 1, 2, • • • , 2A),
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where

1
S\ = Xo,       s2 = r2 —,

gi

,.    ,s »"2,-lg2,+-l _
(4.6)    52/_i = r2j_2———-■-      (; =• 2, 3, • • • , A),

(1 _ rjf.jjf»/ + r2,-_ig2j+i

(1 — r2/_i)r2,- + r2,-_ig2)+i #
s2,- = ——-(/ =» 2, 3, • • • , A)

?2J+1

i« /erws o/ iAe numbers (gz, gi, • • • , g2k+i) given by

c2

gi =-Xo,

.. „.                    /  c2c4 • • • C2j \
(4.7)g2m = - (-)

\ CiCi • • • C2j-i/

.rXo + (fL+^! + ...+ ^---^)i,
L \c2      c2c4 c2Ct ■ • • c2,-_2/J

0' = 2, 3, • • • , A),

and where a24+i=0 in case equality holds in (4.4) or

,A  ,v (#«+i - 1)_
(4.6) 52i+x = rM-——-—

(1 - r2t) + (g2*+.i - 1)

in case strict inequality holds in (4.4).

It   can   be   verified   that   if   (4.4)   holds   then   the   numbers

(si, s2, • • • , s2k) given by (4.6) satisfy the conditions

(4.8) si > 0; 0 < Si < 1,        i = 2, 3, •   • , 2A - 1; 0 < sik ^ 1,

and that if strict inequality holds in (4.4), then the numbers s2k and

52*+i given by (4.6) and (4.6)', respectively, satisfy the conditions

(4.8)' 0 < sn < 1,        0 < 52*+i g 1.

Using the relationships

ia «•, .      Cl*-> (1 — r2i-2)r2j-X
(4.9) g2,„i - 1 =-g2;+i = —-g2/+1

c2j (1 — fti-i)ry

(j = 2, 3, • • • , A)

among the numbers (gz, g6, ■ ■ • , g2*+i) given by (4.7), it can be

shown by induction that if (4.4) holds then the relations
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— C2

Si = Xo, St = —— >
g»

Cq*—2(1   —  J?2j*— l)
(4.10) (1 - 523-2)52,-, = ——-5_L_1 (j=2,3,-■ , k),

gtj-1

(1 - s2i-i)s2j =- 0 = 2, 3, • • • , k)
gii+i

can be solved for (si, s2, ■ ■ • , s2k) and these numbers are given by

(4.6), and that if strict inequality holds in (4.4) then the additional

relation

IA    IAN/ /1 N C2*^   ~  gik+J
(4.10)' (1 - s2k)sik+i =-

f2*+l

can be solved for s2k+i and 52^+1 is given by (4.6)'. In view of Lemma

3.1 and Theorem 3.2, this completes the proof of Theorem 4.1.
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