
THE PROPAGATION OF ERROR IN NUMERICAL
INTEGRATIONS

MARK LOTKIN

1. Introduction. The numerical integration of differential equations

is generally performed by replacing the differential equations by

approximate difference equations whose solutions are expected to ap-

proach those of the associated differential equations as the step size

approaches zero. The replacement of differential by difference equa-

tions may clearly be carried out in a variety of ways; the actual

choice will depend on particular circumstances, accuracy require-

ments, computational facilities, etc.

It is now a well known fact that whenever the order of the differ-

ence equations exceeds that of the original differential equations there

are introduced certain numerical solutions that are extraneous to the

original differential equations. The behavior of these extraneous

solutions in general determines the usefulness of the integration

method. For such a method to be effective it must be "stable" in the

sense that the extraneous solutions always remain of negligible size

as compared with the actual solutions.

Thus it is of interest to distinguish first between stable and un-

stable methods. In addition, it is also of interest to determine, in either

case, the growth of error in the large, since the knowledge of this

quantity permits an estimation of the accuracy obtained.

This paper, then, deals with a number of standard methods of

integration, and investigates their stability and propagation of error.

Round-off is considered to a certain extent, but not completely; see

footnote 1. While some of the results have been obtained previously,

mainly by L. H. Thomas [l] and H. Rutishauser [2], others do not

seem to be as well known.

The propagation of error was already treated previously by

Rademacher [3 ] and others. While the method of adjoint differential

equations employed there seems to be capable of general application,

it was used, in [3] especially, for Heun's method only.

Finally there are carried out a few illustrative examples; they show

that the theoretical expressions obtained frequently lead to good

estimates.

2. Solutions of linear difference equations. Let us assume that the
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integration of the nth order differential equation has proceeded from

a starting point Xo to a point Xk, and that the original differential

equation has been replaced by a difference equation of order 5:

(2.1) OlksVk+s + Olk,s-lVk+i-l +   ■   ■   ■   + OLkfiVk + Oik  =  0,

where the coefficients a*y, a* are known, with a*. 5^0 for each k, and

initial values Vo, Vi, • • • , v,-i have been supplied. For our purposes

it is now convenient to use matrix notation. Introducing, then, the

column matrices

~»jb+«-i~l ra*~l r»«-i-
Vk+s-2 0 »8_2

Uk = •        ,        bk =      ■     ,        uo =

- vk J L_oJ Lto.

and the square matrices of order s:

\~ctk,t-i   ak,,-2 ■ ■ ■ aha
r-a*.o---o-|

1 0        • • • 0
0     1 • • • 0

/*= Ak=    0 1        •••0

_  6   0 • • ■ i J
Lo      0     ■ ■ 10 _

we may express (2.1) as a system of difference equations of the first

order:

(2.2) JkEuk = Amk+bk,

with E denoting the displacement operator

Evi = vi+i.

Since J* is nonsingular, (2.2) may be written as

(2.3) Uh+i = Jk AkUk + Jk bk = CkUk + dk,

with

Ck — Jk Ak,       dk = /* bk-

The general solution of (2.3) is

(2.4) uh = Pk-iUo + £ P~tldX

where
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Pk = CkPk-i,       Bo = Co,

or

k

Pk-i = n Ck-t.
t=i

In particular, if Ck is actually independent of k, then P*_i= C* and

(2.5) »t = C'f«o + EC"H4

The use of Sylvester's theorem [4] now permits us to express the

solution uk in slightly different form, as follows: let Cr(X) =X/ — C,

Ga(h) denote the adjoint of G(X), 8(X) the determinant of G(K), and

8'(\)=dd/dk. If the characteristic roots XOT, m = l,2, ■ ■ ■ , s, of Care

distinct, then

(2.6) Ch = J2\lHm

with

Hm m H(\m) = Ga(\m)/5'(\m).

Consequently, from (2.5),

Uk  =   2-1 ^mHm I Mo  +   £_, ^™       <*« ) >
m_l \ (-0 /

or, if w0 = 0,

(2.7) «4= E^XX*-''1^.
m-l (-0

If the distinct roots X,-, * = 1, 2, • • • , q, of C have multiplicities /i,-,

then (2.6) must be replaced by

_        1       rrfw-1 /\kGa(X)\l(2.8) Ck=2Z-I-—J
i   (mi- lJlLdX^V ««(X) /-W

8W(X) = (x - xo-«8(x).

In particular, if the only multiple root of C has the value zero, then

clearly (2.8) reverts to the form (2.6) with the summation to be ex-

tended over all the nonvanishing roots. This observation will be put

to use in the subsequent discussion.

3. The variational difference equations. The foregoing treatment
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of the difference equation will now be applied to the numerical inte-

gration of the nth order differential equation

(3.1) y(-> -/„(*, y, /,••-, y<-»)

subject to suitable boundary conditions. The exact solution y(x) of

(3.1), assumed to exist uniquely, may be expressed in the form [2]

t r

y(xk+i) = zZ aojy(xk-j) + h £  «u7'(**-j) + • ■ '
3-0 J—1

+ ^ Z ««?<*>(*»-,) + Tk,
(6. L) ,__i

co,      .      -A   (i) (0.      . -A   «)     (.+i)
y   (xi+i) = 2^ ««j y   (*fc-j) + » 2^ Oi+i.yy     (**-/) + • • •

3=0 —1

,«■-•' A    (')   (W)+ A     2^ aN,y   (**-,■) + r*.-,

for * = 1, 2, • • • , m —1. Here h = Xk+i — Xk is the step used in the inte-

gration, the Oyj are constants that will in general depend on r, where

r itself indicates a certain range of points Xk-j to the left of Xk; to each

numerical method of integration there is associated a fixed value of r.

The functions Tk, Tki are truncation errors of orders hN+1, hN~i+1, re-

spectively, with N?±n denoting a positive integer. In case N exceeds

the order n of the equation (3.1) the derivatives of orders n + l,

n + 2, ■ • • , TV occurring in (3.2) may be obtained by N — n successive

differentiations of (3.1):

(3.3) y«(») = /,(*, y(x), y'(x), • • • , ?<*-"(*)),

i = n+l, • • • , N. The coefficients a® are not arbitrary but normally

depend on certain conditions (4.5) derived below.

In solving the integration problem numerically (3.1) is  actually

replaced by

•y(») = *fn(x, *y, V, • • • , *y<"-1)),

where the asterisks indicate rounded values, and the method of inte-

gration actually employed may be of the form

(3.2a) *y£i = £, *<H? O *yZj 8 • • • © A*"* £ *<$ O <!
3-0 3—1

for » = 0, 1, 2, • • • , n — 1, and

(3.3a) *yk+i = */«(**+!■ *y*+i " ' ' *>"*+i ). n = * = ^
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In (3.2a) the circled symbols indicate pseudo-addition and pseudo-

multiplication, i.e. certain digital operations by which the cor-

responding arithmetical operations must be replaced whenever nu-

merical calculations (which of necessity involve rounding) are carried

out.1

In practice the numerical solution of the sets (3.2a) and (3.3a) is

obtained iteratively in the following manner: Extrapolation, or some

other means, permits the determination of a first set of values for

*yi%u n=i = N. Then (3.2a), with i = n-\, n-2, ■ ■ ■ , 0, lead to a

first set of values for *yi%\, 0 = i = n — l. Next an improved set

*yk+i, n^i^N, is computed by means of (3.3a), etc., this cycle being

repeated until duplication occurs.

Our main interest is now the determination of the errors

(0      *  (0 (0,   .
v-   =  y.   - y   M,

and of the associated property of "numerical stability" in the sense

that all the rj® remain small throughout the entire region of integra-

tion. By (3.2a) and (3.2),

Vk+i = l_j [an  O   yk-i — an y   (xk^j) + • • ■ J — Tki.
j-o

However,   *aO*y =a*y + (*aQ*y — *a*y)+(*a — a)*y,   and   *aO*y

— *a*y=p, *a—a=a, with \p\ ^/x,  \a\ fSju, iu = 2~1/3~'1' denoting the

basic rounding error of a computation carried out to y places in a

number system of base /3.

Consequently

co        <A   («> («) -A   «)     (t+i)
Vk+i = 2-i aH Vk-i + h 2-, di+Lflk-i   + • • •

)~0 ;.—1

,„   .. + n       2-, VNjVk-j — I u + rki,
(3.4) ,-,-i

rki  =   X (PUk + <rii*yk-j).
i

Further, by (3.3) and (3.3a),

1 Note that there is no provision in formula (3.2a) for rounding the product in-

volving hN~(. Thus the formula and later special cases of it in §4 are based on the

assumption that the independent variable x and the step size h may be chosen exactly,

and that multiplication by powers of h does not necessitate rounding. These assump-

tions could be dropped at the expense of including additional rounding items. As

written, however, the conclusions of the paper may not be precisely applicable to

numerical integrations in which the term in question is rounded.
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Vk+1 = *fi(Xk+l, *y*+l, • • • ) - M%k+1, y(Xk+l), ■ ■ ■)

for i = n, n + 1, • • • , N.

But

*/«(*. *%•••)= /<(*, *?,•••) + <*>.,

with (/>j denoting certain quantities that depend on the procedure

employed in calculating /,- from its arguments x, *y, • • • . Thus,

correct to terms of the first order in 77,

«—1

(3.5) rttli = Z (dfi/dy'W+i + 4>i, n^i^N,
3=0

the partial derivatives to be evaluated at x^+i, *yit+i, ■ • • , *y(*+i •

The system (3.4) and (3.5) of difference equations is transformed

into the form (2.2) by the introduction of the column matrix Uk,

where

T r / / (W) (tf)-r

U k   —    [Vk,  Vk-h   •   •   •   , Vk-r', Vk,   •   ■   •   , Vk-r',  '   '   '   , Vk      ,  '   -   -   , Vk-r J,

the superscript 2" denoting transposition. Then our system becomes

(3.6) JkEUk = AUk + bk,

where Jk, A are square matrices of order s = (r + l)(N+l), and bk

is a column matrix of the same order. These matrices are composed

as follows:

(i) The elements J,/ of Jk are square matrices of order r + 1,

Ju = liori = 0, 1, • • • , N,

Jij=0 for 0=i=w— 1, j<i, and for n^i^N, j>i,

'-h'-'ati 0-o"

0
Jij = • for 0 g i ^ » - 1, 1 g j =: N, i < j,

0 • • • 0_

--dfi/dy^l 0 • ■ • 0~

0
Jn = ■ •        for n ^ i = N, 0 = / = A?" - 1, i > j;

0 • • • 6_

(ii) the elements Aij of A are square matrices of order r + l,
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a,o     an  • • ■ air

1       0 0

An =    0 • for 0 g * ̂  « - 1,

_0 0     1     0    _
_0 0 • ■ ■ 0"

1 0 • • • 0

An =0 •                                                            for n ^ i ^ N,

_6   0   1   6_
~ (o     (•) «)~

fljO       #;'l    '   '  '   dj,

0 0
-4i,- = hM    ■ ■ ior 0 ^ i = n - 1, 1 g> j ^ N, i < j,

_6 • • • 0   _
A,j = 0     ior n ^ i = N, j ^ i, and also for 0 < i ^ » — 1, j < i;

(iii) the column matrix bk has the transpose

T
bk = [— r* + t, o, • • •, o, • • •, — r*,n_i

+ T*,n_i, 0, • • • , 0; <j>n, 0, • • • , 0; • • ■ , <pN, 0, • • • , 0].

Clearly the determinant D(J) of J is of the form

D(J) = 1 + CiA + C2h2 H-,

i.e. D(J) 5*0 for sufficiently small h.

Let us now assume that the partial derivatives (d/,/dy())) have the

property that there exist points a0, B^ in a suitably defined space

|x-x0| =<*, [y^-y^l ^j8(fl, i = 0, 1, ■ • • , N, such that dfi/dy™ is
approximately equal to a constant fa (a0, B0, {$'<,, • ■ • , j6o_1>). In

such a case let JQ denote the matrix / whose elements are evaluated

at a0, 8%\ If the characteristic roots X of Co = Jo1A are distinct, then

by (2.7)

(3.7) uk = E^Exi"*"1/^.
m (=0

Now A  has at least N — w + 1   rows of zeros.  There are  thus
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(N—n + l) (r+l) artificial characteristic roots of Co of value zero.

There must be, further, the n roots associated with the n independent

solutions of the variational equations; these roots are of the form

X« = 1 + ymh + ■ ■ ■ , m = 1, 2, • • • , ».

Thus there remain

(r + 1)(N + 1) - (r + l)(N - n + 1) - n = nr

additional roots. These are "extraneous," introduced by the method

of integration. "Extraneous" solutions of the integration problem are,

consequently, solutions belonging to extraneous roots of Co.

Now in the solution vector Uk the only components of interest are

those of Q*, where

«*  =   Ulk, Vk,  ■  ■  •   , 1)k     J.

These may be calculated obviously from (3.7) by simply replacing

bk in (3.7) by Ck where

t      r ■,

Ck   =    [—   T + T,   —   Tkl + Tfci,   •  •   ■   ,   —   Tk,n-1 + Tk,n-U <t>n,   '  '   '   , <t>N],

accompanied by a similar contraction of the matrices H(X) and J^1.

The determination of the characteristic values X of C0 = Jq1A and

the construction of the error vector may be simplified somewhat,

as follows:

Let us define

(3.8) T(A) = M - JaA,

where /, A are square matrices of orders s, and Ja denotes the adjoint

of J. Similarly, let Ga denote the adjoint of G(X) =\I — J~lA. Let,

further,

A(A) = det T(A),

and, as before, S(X) =det G(X).

Then we have the following

Lemma. GJh' = Ya/M.

Proof. Clearly

(3.9) T(A) = D[AD~l - J-1 A] = DG(A/D),

where again £> = det /, G(\) =X7 — J~lA. Consequently,

A(A) = D'S(A/D).
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To each root A of A (A) =0 there is then associated a root

X = A/D

of S(X)=0. Further,

(3.10) 5'(X) = D-+1-A'(A).

However, by (3.9),

(3.11) r„(A) = D*-*G.(K)

which, together with (3.9), proves the lemma.

We have thus obtained the following general

Propagation Theorem.

(3.12) Qk - £ [Ta(Am)Ja/DA'(Am)]2_]'C'1Ct.
m t

In this theorem the index m is to be extended over all distinct non-

zero characteristic roots Am of A(A)=0, XOT=Am/D(J), and the ele-

ments of the vector ck are due to truncation error and rounding. The

theorem shows again that for a method to be stable for sufficiently

small h it is sufficient that all characteristic roots Xm be of absolute

value not exceeding unity.

The actual computation of Qk would then proceed in obvious

fashion from the construction of JaA and A(A) to the calculation of

D(J), Km, and Ta(Am) -Ja, and could be carried out concurrently with

the integration.

4. The propagation of error in the case n = N=\. The deductions

of the previous sections will be applied now to a number of well

known methods of numerical integration. We shall start by consider-

ing the general first order differential equation

y' = I(x, y).

In this case the associated homogeneous variational equation is

v' = fvV,

it has the fundamental solution

v(x) = expN    fydlj.

Among the solutions X of the characteristic equation 5(X)=0 in-

herent in any useful method of integration there must be one,X=Xi,

that approaches this fundamental solution r)(x) as the step size h
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goes to zero. It will be seen that this root Xi is of the form

Xi = 1 + hfy + ■ ■ • « exp hfy S3 exp p, p = hfv;

it gives rise in (3.12) to the principal term of the form

fii(X,) = MiXi-'-1 « Mi exp ( ]     fydtj.

In order to prevent the error in the large from increasing rapidly

it is thus sufficient to carry out the integration in the direction Ax

in which fyAx is nonpositive.

Let us consider first the important case n = N=\. Here we have

~h oi,_i • • • on [~"/B • • • o~
r /    -/oil • • •

J = I,    /oi — •     , /io —      • •    ,
l_ — J 10       I    J

_0 • • • 0J |_0  •• ■ 0_

000     #01 "  "  •  CtOr

VAoo  A0{] 1      0    • • • 0
A = , Aoo =     • •      ,

Lo   AuV

-0   o   i   6 _

~ha\o  hau ■ ■ • ^air-1 TO ■ • • 0   0-

0 ... 0 100
^oi =     • ,    Au=     ■ • .

_6       •   ■   • o J Lo ■ • • i o_
It follows that

D = 1 — pai,        Oi ss fli,_i,

_1   0 • • • 0_

r# /0fi o d■ •• o'-L J-   K" i
_0   0 • • • D_

(4.1)
[Too   Toi-!

1 10     1 llJ

A  —   doo       —flOl   '   '   *   —0O,r-1       —#0r

-Z> A    • • • 0 0
Too = • >

0 0    •• •      -D        A _
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- — haio  — hau ■ ■ ■ — hai~

0 0 0
Toi = • i

_   6.0   _
ffoo     flOl ■   ■   ■   0Or

(4.1) _ 0 0
110-Jv    • ,

_6.o _
~A — paio    —pai ■ ■ ■ —pai,r-i    —paiT~

-DA 0 0
Tii =

6 0 -D A    _

The characteristic equation A (A) =0 may be expressed in the form

A(A) = A'+^A) = 0,
(4.2) W

AC(A) = A--+1 - e0Ar - eiA"-1 - • ■ • - er,

where

(4.3) e„ = 2>(a0p + palp), p = 0, 1, • • • , r.

The equation for the extraneous roots Am, if any, is now quite

easily obtained from (4.2).

It is convenient to write the characteristic expression in the form

AC(A) = A--+1 - Ac0(A) - pAci(A),

where

(4.4) AC,(A) = Arai0 + A^Dan + • • • + £>ra,>, i = 0, 1.

Since Ai = D\i = (\-\-p)D is a solution of Ac(A)=0, there are ob-

tained for the coefficients a^ the relationships

r

X) fflo/ =  1,

(4.5)
r r

ai + £ «ii — HI (j)aoj = 1.
)'=0 j'-O

One may show, after some lengthy calculations, that the con-

tracted adjoint of T(A) may be expressed as
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TAC„(A)     Mcl(A)"|
Ta(A) = Ar ,

L/A«(A)   Mci(A)J

or

r.(A,-A{^][A,„,A„][^].

Therefore,

r„(A)7. = aT   1 [A^1, h(aiAco(A) + Ael(A))l,
L JyJ

and, finally,

(4.6) M = 1 £ -—777T &£*■ ̂lA<° + A'^ S^'_1C(.
Li?* J      Z?   m   AmAc'(Am) ,

The error rj't may thus be obtained quite simply from rjk by multi-

plication with fy.
The contribution of the root Ai= (1 +p)D to the error rjk may now

be written down at once; it is

"*(Al) = 777-T I1 + ?(' -('- 1)fll)» A(fll + 2 «iy)l
(4.7) Ae(Al)L V °       7J

• E exp(   I   /i/^xjc,.

It is of interest to apply above deductions to some specific cases.

I. Case r = 0. As was pointed out above no extraneous solutions

arise in this case, so that the methods are stable in the direction in

which p<0. Techniques falling into this class are due to Euler,

Heun, Runge-Kutta, Milne, and others.

Since now

AC(A) = A — (aoo + paio),

there is obtained from (4.7) and (4.5)

Vk = [l + poi, h] zZ exp(  I      fvdx\ ct,
t \J*(+i        '

-[-?*]■

or
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[(-Tt + Tt)/h + airtfv + <j>]exp(  I      fydx)dt.

I, 1. Euler's method.

*yk+i = *yk + h*y'k,

(aoo ai ai0) = (1, 0, 1),        T = (h2/2)y".

Vk^J [-(A/2)// + rt/h + <b] exp ( j fydx\ dt.

I, 2. Heun's (modified Euler) method.

*yk+i = *yk+(h/2)(*yl + *y'k+0,

(ooo oi oio) = (1, 1/2, 1/2),

T = - (A3/12)y'".

ij* ** [- 1 + ^/2, A] £ exP (   I   .M*) ^t.

II. Case r = l. There is one extraneous root A2; it satisfies the

equation

(4.9) AC(A) s A2 - Ac0 - PA* = 0

where

Aco(A) = Aooo + -Daoi,        Aci(A) = Aau + Dan.

Since Ai+A2 = Ooo+£aio, and an satisfy (4.5), it follows that

(4.10) A2 = — aoi + P(aoi — an).

Further

A'(Ai) = (2 - aoo) + p[2(l - ai) - a»],       AC'(A2) = - Ac'(Ai).

II, 1. Simple central difference method.

*yk+i = *y*-i + 2h*y'k,

(aoo aoi ai ai0 au) = (0, 1, 0, 2, 0),

T = (h*/3)y'".

Thus

D(J) = 1,

Am = + 1 + p, m = 1, 2,
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A'c(Ai)  = 2,

and, consequently,

Vk = ~\[l + P,2h]Z^p( f fvdx)
(4.11) 2  l * \J /

+ [- l + ^2A]E(-l)*-,exp(-J,/^|c,.

The extraneous root A2 may thus give rise to an oscillating term

of increasing magnitude whenever the integration is applied in a

direction in which hfy<0. However, it is entirely possible that the

actual increase of this term is choked off by the rounding procedure

itself. See footnote 1. Used for integrations in the opposite direction,

over short ranges, the method may give useful results.

II, 2. Simpson's method. Here

*y*+i = *yt-i + (V3)(*y*+i + 4*yl + *yLi),
whence

(a00 001 fli aio On) = (0, 1, 1/3, 4/3, 1/3),

T = - (h*/90)yv.

It follows that

D(J) = 1 - p/3,        Am = ± 1 + 2p/3,        Ae'(Ax) = 2.

Therefore,

Vk = — j [1 + p, 2 A] D exp ( J* /„Jxj

(4.12) + [- l + p/3, 2h/3]}Z (-l)k~'
t

•exp f -  I  fydx/3y>cu

The second root A2 may thus again make this integration method

unsuitable.

III. Case r — 2. The three roots Am, w = l, 2, 3, satisfy the char-

acteristic equation

Ae(A) = A3 - Ac0(A) - #Ael(A) = 0,

with

AC,-(A) = A2ai0 + ADan + D2ai2, i = 0, 1.
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The 2 extraneous roots A2, A3 may thus be obtained from

x     A2 - A [(aoo- 1) +p(ai + aio - 1)]
(4-13)

— D[— a02 + p(aa2 — an) \ = 0.

Ill, 1. Adams method.

*y*+i = *yk + h[*y'k + (l/2)V*yI + (5/12)v"*y*] + ■■■

with

V(''+I»?i = V«>g» - V<;)?4_i.

Thus, alternately,

*y*+i = *yk + (V12) [23*;y* - 16*yLi + 5*yI-»] + • • • .

Then,

(aoo, aoi, ao2, ai, aw, an, at2) = (1/12)(12, 0, 0, 0, 23, —16, 5).

The 2 extraneous roots A2, A3 satisfy

A2- (ll/>/12)A+ (5^/12) = 0.

Therefore,

Am = ± (- S^/12)1'2 + ll/>/24, m = 2, 3.

For sufficiently small A this method, then, is stable, and the propa-

gation of error depends essentially on Ai.

Since

A^(Ai) = 1 + 3p/2,

it is found that

(4.14) q» = [1 + #/2, h] 2Z exp ( J /„«**) c

III, 2. Gregory's method. Here

*yk+i = *3<* + h[*yk+i - (l/2)V'*y*+i - (l/12)v"»ylfi

- (1/24)V'"S+1] + • ' •

= *y* + (A/24) [9*y^i + 19*y*' - 5*ykl1 + *y4_'2] + • • • .

Thus

(a00 a0i a02 d ai0 an aJ2) = (l/24)(24, 0, 0, 9, 19, -5, 1),

T = - (19/720)A«y.
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By (4.13), then, D = l-3£/8,

A2 - (p/6)A + p/2i = 0,

so that

Am = + (- p/24yi2 + p/12, m = 2,3.

The method thus has the same stability properties as Adams'

method.

Since again

Ac(A,) = 1 + 3^/2,

one obtains from (4.7)

(4.15) vk = [1 + P/8, h] E exp fj fvdx\ ct.

5. Numerical example. To test the propagation theorem let us

integrate the differential equation

(5.1) y' = y-2x/y

by means of Simpson's method II, 2. Taking h = 0.5 and starting at

x = 0 with values computed from the exact solution

y(x) = (2x + 1)1/2,

there are obtained the "solutions" shown in columns (2) and (3) of

Table I. At each step a sufficient number of iterations is carried out

in order to achieve agreement to five decimals (column (2)), or four

decimals (column (3)). Due to the instability of the method the

five-decimal "solution" diverges more and more from the four-

decimal "solution."

The fourth column (4) contains the exact solution y(x), and the

fifth column (5) the error rj = *y — y(x), the solution *y taken from

column (3).

The growth of error may be inferred from (4.12), or, somewhat

more accurately, from

Vk = i?*(Xi) + j?a(X2),

(5.2) ,»(X0 «-£[(! + P)((h*/90)yvt + rt) + 2/^]Xi"'~\
2  i=o

,e „    **(Xi) - " 4 ^ [(-1 + ^/3)((^/90)yI + u)
(5.3) 2  t_o

+ (2/3)^]X2~'"\
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Table I. Integration of y'=y—2x/y, h=0.5

(1) (2) (3) (4) (5)

x *y *y y(x) y

0 1.00000 1.0000 1.0000 0
.5 1.41421 1.4142 1.4142 0

1.0 1.73516 1.7352 1.7320 .0032
1.5 2.00529 2.0053 2.0000 .0053
2.0 2.25064 2.2507 2.2361 .0146
2.5 2.48438 2.4845 2.4495 .0350
3.0 2.73397 2.7342 2.6458 .0884
3.5 3.04775 3.0483 2.8284 .220
4.0 3.53706 3.5383 3.0000 .538
4.5 4.42054 4.4232 3.1623 1.26
5.0 6.07815 6.0834 3.3166 2.77
5.5 9.08576 9.0953 3.4641 5.63
6.0 14.31274 14.3292 3.6056 10.7
6.5 23.14506 23.1727 3.7417 19.4
7.0 37.86292 37.9089 3.8730 34.0
7.5 62.23708 62.3131 4.0000 58.3
8.0 102.49977 102.6253 4.1231 98.5
8.5 168.93852 169.1431 4.2426 165
9.0 278.52584 278.8552 4.3589 274
9.5 459.25450 459.8020 4.4721 455

10.0 757.28847 758.1877 4.5826 754

For our example,

k = 20,        h = 1/2,        p = hfy = 1 - [2(2* + l)]"1,

y = 105(2x + l)-9'2,

| t\,     I <t>\ = CilO-5, c, < 10,

and

Xi = 1 + p.

Now p increases from 0.5 at x = 0 to 0.98 at x = 20, so that £«0.7

could be taken as average value. Furthermore, for the terms cor-

responding to the low values of x, which contribute most to ^(Xi),

r and <b are negligible. Thus, by (5.2),

(5.4) Vk(\i) ~ 4 I) (l/2880)y;(1.7)2°~'.
2  i_o

One obtains
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tu(Xi) « 762.

Since X2= —l+p/3, so that

„,(X2) « - — £ (l/2880)y:(-0.77)2°~',
2  <_o

and consequently negligible, we get

Vk ~ i?*(Xi) ~ 762,

which compares very favorable indeed with the actual value of 754

for the total error.

In order to examine the oscillating term tyt(X2), let us integrate

again (5.1), this time starting at x = 60, and taking h= — 1. The

"solution" is shown in column (2) of Table 2.

Now,

k = 34,        h = - 1,

p= - 2 + (2x+l)-1~- 2,

|t|,       |*| = <vio-», c2 m 2,

X2= - l + p/3 « - 1.66.

Since for low values of 2 the term (hi/90)y* is less then 1.10-7, in

absolute value, there is obtained the expression

(5.5) | Vk(M) | « 10-* E (- 1 + P/3)34-'.
(=0

This formula leads to

|«ft(X*)| « 19.0,

which is very close indeed to the exact error given in Table 2.

The exhibited expressions, then, lead to quite useful estimates of

the error.
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Table 2. Integration of y'=y—2x/y, h=—l

(1) (2) (3) (4)

* *y y{x) 105i;

60 11.00000 11.00000 0

59 10.90871 10.90871 0
58 10.81665 10.81665 0
57 10.72381 10.72381 0
56 10.63014 10.63015 -1
55 10.53566 10.53565 1
54 10.44030 10.44031 -1
53 10.34409 10.34408 1
52 10.24694 10.24695 -1
51 10.14891 10.14889 2
50 10.04984 10.04988 -4
49 9.94994 9.94987 7
48 9.84875 9.84886 -11
47 9.74698 9.74679 19
46 9.64333 9.64365 -32
45 9.53994 9.53939 55
44 9.43304 9.43398 -94
43 9.32899 9.32738 161
42 9.21679 9.21954 -275
41 9.11515 9.11043 472
40 8.99193 9.00000 -807
39 8.90203 8.88819 1384
38 8.75130 8.77496 -2366
37 8.70087 8.66025 4062
36 8.47474 8.54400 -6926
35 8.54560 8.42615 11945
34 8.10464 8.30662 -20198

33 8.53865 8.18535 35330
32 7.47987 8.06226 -58239
31 9.00031 7.93725 106306
30 6.19044 7.81025 -161981
29 11.03789 7.68115 335674
28 3.61153 7.54983 -393830
27 19.42204 7.41620 1200584
26        -12.03925 7.28011 -1931936
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