
DECOMPOSITION OF A GROUP WITH A SINGLE
DEFINING RELATION INTO A FREE PRODUCT1

ABE SHENITZER

Let G be a group with generators a„ v = l, ■ • • , n. An application

of any automorphism A of the free group on the a, or, equivalently,

of a sequence of P-transformations (defined below) maps G upon an

isomorphic group G'. If G is defined by a set of prescribed relations

for the a„ G' can be defined by transcribing the original relations

in terms of the A_1a,. Even if G is defined by a single relation, it is

not known how far the set of all groups with a single defining rela-

tion and isomorphic to a given one is determined by the transforma-

tions A. However, Grushko's theorem [2]2 implies that at least the

decomposibility of G into a free product of two of its proper sub-

groups can be made obvious by applying a properly chosen A. We

shall show that for a G with a single defining relation a result of

J. H. C. Whitehead [l] provides a constructive method for finding A

and some simple tests for the free indecomposability of G.

Definitions and Remarks. (1) T-transformations. By a P-trans-

formation on the generators au • • • , a„ of the free group F

— F(a\, ■ • • , a„) we mean a mapping of the form:

Tak = ak for some fixed k, 1 = & = «,
e — c — c c

Tat = Oi or a,a* or a* a, or ak a{ak, i ^ k, 1 ^ i ^ n.

The Greek superscripts denote either 1 or — 1. The symbol a* is re-

ferred to as the distinguished symbol for the given P-transformation.

Whenever necessary, we shall indicate the distinguished symbol

by writing Ta]c rather than P.

(2) The symbol TW. The symbol TW (W= W(au • • • , an), T de-

notes a P-transformation on oi, • • • , a„) denotes the word obtained

by reducing W(Tai} • • • , Tan) (i.e., bydeleting all ajL,1, a~la, in it).

(3) The symbol L(W). If IF is a reduced word, then L(W) denotes

the number of symbols in W. We refer to this number as the length

of W.

(4) T-reductions and level transformations. A P-transformation, as
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applied to a (reduced) word W, is called:

a P-reduction if L(TW) < L(W)

and

a level transformation if L(TW) = L(W).

(5) Internal and external T-transformations. Let IF be a reduced

word, W=W(ai, ■ ■ ■ , a»). Regard it as a word in the symbols

fli, • • ■ , On, a. If T=Tai, then T is called an internal ^transforma-

tion with respect to W. If T= Ta, then T is called an external T-trans-

formation with respect to W.

(6) Active and inactive symbols; right, left, and transform symbols.

Active and inactive words. Consider a ^-transformation on the sym-

bols Oi, • • • , an. We call a, inactive if 7aj=a,. We call a, active

if Ta.-s^a,-. Ii a* is an active symbol and Ta£ = apaJ; (T = 7^t), we call o*

a rig/^ symbol. If Tal = ak'al, we call a? a left symbol. If 7a,-= ajpa.ai,

we call a, a transform (symbol). A word W is said to be active (inac-

tive) T if one (none) of its symbols is active T.

(7) Conjugate T-transformations. Consider W= W(ai, ■ • • , an) and

let a^ai, l^i^n. Let Ta be a definite ^-transformation on the

symbols fli, • • • , an, a. We shall call an internal T-transformation

Tah on the symbols au ■ • • , an conjugate to Ta if, for a^ak,

P P    * /* P    *
r„o,- = a<fl implies roto, = a, a*,

Pafl< = a   aia implies Takai = ak acak,

Taat = a,- implies 7\,ta. = o<-

(8) Disjoint words. Two words are said to be disjoint if the symbols

which occur in one of them do not occur in the other (a and a-1 are

not disjoint).

(9) Minimal words. W= W(ax, • • • , a„) is said to be minimal (T)

or, simply, minimal, if L(TW) ^L(W) for every T on ax, ■ ■ ■ , a„. If

W is minimal with respect to all ^-transformations on a\, ■ ■ ■ , an,

then it is also minimal with respect to all ^-transformations on a set

of symbols containing the symbols Ci, • • • , an.

(10) Use of the term "involves." If it is impossible to eliminate a

symbol a appearing in a word W by writing W cyclically and de-

leting all pairs (aji~l)±x, we say that W involves a.

Lemma. Let W=W(ai, • • ■ , an) be a (reduced) minimal word in

Oi, • • • , an. Assume that W is nontrivial, i.e., L(W)>1. Let a^a,-,
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t = l, • • • , n. Let Taai9^ai for at least one a< in W. Then L(TaW)
-L(W)^2.

Obviously the to-be-proved increase in length of W under T is due

to "trapped" a-symbols.

Proof. Note that if L(W)>1 and W is minimal, it must contain

at least two symbols of a kind, if any. For, let us assume that W

contains a single symbol ai and W= ■ ■ ■ aia, • • • ,J9*1. Then the

P-transformation: ffli—^-aia/1, a—mf, ij*l, decreasesL(W) by 1, which

contradicts the assumed minimality of W.

Now consider a definite P0 such that L(TaW) =L(W). It is clear

that TaW— W. Also, W must be a product of the form:

(1) W = II [(*'s or 1) an r (t's or 1) an I (*'s or 1)],

where i = inactive symbol, r = right symbol, / = left symbol, t = trans-

form. Let ai be the first right symbol in the above product. It is not

difficult to see that the conjugate Tai of Pa (see definition (7)) applied

to IF would result in the elimination of all ai symbols from W without

insertion of any other symbols. But this would decrease L(W) which

is impossible in view of the assumed minimality of W.

We know by now that L(TaW)-L(W)^l. The "trapping" of an

a-symbol in TaW may be effected by a right a,-, a left ait or a trans-

form a,-. We know that W must contain at least two such a< symbols.

We claim that each of these a,- symbols "traps" an a-symbol. We

assume that this statement is false and proceed to deduce a con-

tradiction.

We observe that every active (under Ta) symbol a, in W which

does not "trap" an a-symbol must be contained in a "block" of the

form:

[right symbol (transforms or 1) left symbol].

As for the "trapping" symbol a* we assume, at first, that it is a right

or a left symbol under Pa. Then, W= Wia\W2, where Wt = 1 or a word

of the form (1) above and not both Wt = 1. As before, Tai, assumed to

be conjugate to Ta, applied to W will eliminate all a, symbols in W

other than a* and will not introduce any new symbols in place of the

eliminated symbols. This would decrease L(W) by at least 1, which is

impossible.

There remains the possibility that the trapping symbol a* is a

transform under P„. Then

(2) W m Wi[a'i (transforms or 1) left symbol] W2 = WtAW2

or
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(3)    W = Wi [right symbol (transforms or 1) d°i\W2 = W^AW2.

We again emphasize the fact that not both words Wi and W2 can be

1, for the left (right) symbol in (2) ((3)) must have a counterpart. In

(2), T"ai, where Tai is assumed to be conjugate to Ta and the value of

j>=±1 is determined by the equation: T"a}, = ax'l, / = left symbol,

eliminates an a* in A when applied to W= W\A W2. Also, T"ttiWj = Wj,

j = l, 2. Similarly, in (3), T"ai, where the value of v is determined by

the equation: Tyair=raJ", r=right symbol, eliminates an a< in A

when applied to W= W^AW2. Also, T"aiW1 = Wj,j = l, 2. Thus, in both
cases L(W) is decreased which is impossible in view of the assumed

minimality of W.

We now state a fundamental theorem of Whitehead (Theorem 3 in

[l]): "Any two equivalent minimal sets (T) are interchangeable by

level T-transformations."

It follows immediately from this result that if W\ and W2 are two

minimal forms of a word W=W(ai, • • • , c„) obtained from W by

means of T-transformations, then L(Wi) =L(W2). This fact and our

lemma permit us to prove the following

Corollary. Let W= W(au • • • , an). Let W\ and W2 be two minimal

forms of W. Then W\ and W2 contain the same number of distinct sym-

bols.

Proof. Note that if T is a level transformation with respect to a

minimal word V= V(a\, • • • , o„) which is active T, then:

(a): TV is minimal (by Whitehead's theorem above);

(b): T is internal with respect to V (if V is trivial, i.e. L(V)=l,

this statement is obvious; if V is nontrivial the statement follows

from our lemma);

(c): The number of distinct symbols in V equals the number of

distinct symbols in TV (since T is both level and internal).

Our corollary is trivial if L(Wi) =L(W2) =1. We may therefore

assume that L(Wi) =L(W2) > 1. By Whitehead's theorem there exists

a (finite) chain of level ^-transformations T\, • • • , T» such that

7\ • • • TkWi=W2, where Ti+i ■ • • TkWi may be supposed active 7\.

The desired conclusion now follows immediately by induction on k

using the observations (a), (b), (c) in the beginning of the proof.

It follows from Grushko's theorem (cf. [2]) that: A group with

m _ 2 generators and a single defining relation involving the n gen-

erators can be decomposed into a free product if and only if it is pos-

sible to reduce the number of distinct generators in the left side of

the defining relation by means of a suitable free automorphism on

the generators.
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This result and the corollary to our lemma permit us to prove

Theorem 1. Let G = t7[ai, • • • , an; R(ai, • ■ • , a„) = l], where all.

ai are involved in R. Let H be the free product of an infinite cyclic group

{a} and a nontrivial group B with generators b,?*a. Then G~H if and

only if any minimal form of R contains at most n — 1 distinct a.'s.

Proof. The sufficiency part of the proof is obvious. To prove the

necessity of our condition we assume that Gc^H and that some mini-

mal form of R contains n distinct symbols. By the corollary to our

lemma every minimal form of R contains n distinct symbols. On the

other hand, it follows from Grushko's theorem that it is possible, by

applying a suitable free automorphism to the generators of G, to

find a representation of G such that the word on the left side of the

defining relation associated with this representation contains at most

n — 1 symbols. Minimizing this word we obtain a minimal form of R

containing at most n — 1 symbols, which contradicts the corollary to

our lemma.

Remark. If the number of generators of G exceeds the number of

generators involved in R, G is obviously representable as a free

product of the required form.

It is clear that if the left side of the defining relation associated

with a certain set of generators of G is minimal, then G cannot be

represented as a free product. We now state and prove criteria which

ensure the minimality of a word W(ai, ■ ■ ■ , an) and so the indecom-

posability into a free product of G=G[ai, • • • , a„; W(ai, • • • , a„)

= !]•

Theorem 2. For a product of disjoint minimal words (see definitions

(8) and (9)) to be minimal it is necessary and sufficient that each factor

Wp of the product be nontrivial (i.e., L(WP) > 1 for each Wp).

Proof. Let W=Wi • ■ ■ Wm, Wp minimal and nontrivial, Wp, Wq

disjoint for pr^q, l^p, q^m. Consider any POI a" in Wi. Then

L(TaWi) -L(Wi)^0. Also, if jV*. (i) L(TaW,) -L(W,) =0 if IF,- does
not contain symbols active P„, (ii) L(TaWj)—L(Wj) ^2 if Wj con-

tains symbols active P„. In case (i) no deletions can take place at the

junction(s) between TaWj=W,- and its neighbor(s) TaWk and its

length remains fixed. In case (ii) the length of W, increases as a re-

sult of the application of P0 by at least 2 and its losses, resulting from

deletions at the j unction (s) between TaW,- and its neighbor (s), can-

not exceed 1 if j = 1 or m, and they cannot exceed 2 if 1 <j<m. Now,

W=A WtB, a" in Wt, A and B not both 1. Assume Ar*l. If all the
words in A are inactive with respect to P„, then L(T„A)—L(A) =0,

and no deletions take place between A and TaWi. On the other hand,
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if at least one word in A is active Ta, then L(TaA) —L(A) =2. Simi-

larly for B. Now consider TJL TaWi- TaB. If no deletions take place

at either junction, L(TaW)— L(W) =0. If deletion takes place at

the first junction, say, then the last word in A must be active Ta

and L(TaA)— L(A)^2. It is by now obvious that in any case

L(TaW)-L(W)^0, q.e.d.
As an immediate application of Theorem 2 we have:

The fundamental group of a closed surface cannot be represented as a

free product.

Theorem 3. Let all exponents in W(ai, • • • , a„) be =2. Then W is

minimal.

Proof. Apply a definite T=Tav say, to W, which we can write as

W = Wi(a2, • • • , aJa^Wsfa, • • • , an)ai  ■ ■ •

k
■Wp(a2, • ■ • , a^ai'Wp+^Oi, ■ ■ • , an)

(where W\ or Wp+\ or both may be 1). Then

TaiW = (TaiW1)a\1(TaiW2)aklt ■ ■ ■ (TaiWp)aklr(TaiWp+l).

Observe that deletions, if any, can take place only at one end of

Ta/Wj (cf. the definition of a T'-transformation). This fact and our

lemma yield immediately the desired conclusion.

It is obvious that the theorem holds in the following slightly more

general form:

Let all exponents associated with a generator o,- in W be of the same

sign and in absolute value ^2. Then W is minimal.

Theorem 4. Let W— Vm, V minimal. Then W is minimal.

Proof. The result is trivial for m = \. Let m = 2. If Tisa definite

r-transformation, then T(V2) = (TV)(TV) and deletion can take

place between the two bracketed words if and only if TV is a trans-

form, in which case L(TV) — L(V) = 1. Consequently L[(rF)2]
—L(V2) =0, i.e., V2 is minimal. It follows by induction on k that V2lc,

k=a positive integer, is minimal. Using the reasoning employed in

proving the case m = 2, we can prove our result for Vik+1, and so for
Vm.

The following theorem can be easily proved:

Theorem 5. LetK = K[ai, a2; R(ai, a2) = 1 ] and let G = G[a, b; bn = l].
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Then, for Gc^K it is necessary and sufficient that R be cyclically equiva-

lent to An(ai, a2) where A (ai, a2) is a primitive element in the free group

F(au a2).
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A THEOREM ON COMMUTATIVE POWER ASSOCIATIVE
LOOP ALGEBRAS1

LOWELL J. PAIGE

Let L be a loop, written multiplicatively, and P an arbitrary field.

Define multiplication in the vector space A, of all formal sums of a

finite number of elements in L with coefficients in P, by the use of

both distributive laws and the definition of multiplication in P. The

resulting loop algebra A (L) over F is a linear nonassociative algebra

(associative, if and only if L is a group).

An algebra A is said to be power associative if the subalgebra F[x]

generated by an element x is an associative algebra for every x of A.

Theorem. Let A (L) be a loop algebra over afield of characteristic not

2. A necessary and sufficient condition that A(L) be a commutative,

power associative algebra is that L be a commutative group.

Proof. Assume that A(L) is a commutative, power associative

algebra. Clearly L must be commutative and x2x2 = (x2-x) x for all

x of A(L). Under the hypothesis that the characteristic of F is not

2, a linearization2 of this power identity yields

Presented to the Society, December 28, 1953; received by the editors June 2, 1954.

1 The preparation of this paper was sponsored in part by the Office of Naval Re-

search.

2 See A. A. Albert, On the power associativity of rings, Summa Brasiliensis Mathe-

maticae vol. 2, no. 2, pp. 21-32.


