BEHAVIOR OF SOLUTIONS OF SECOND ORDER SELF-
ADJOINT DIFFERENTIAL EQUATIONS

J. H. BARRETT

Introduction. In this paper the modified polar coordinate trans-
formation,

. , w()
) y(x) = p(%) sin 6(x), (%) = T(Ep(x) cos 0(x),
will be applied to the self-adjoint equation,
(1) (ry) + gy =0.

For x=a, let g(x) be a function of class C, r(x) be a positive function
of class C, w(x) be a positive function of class C’, and y(x) be a
nontrivial solution of equation (1).! The reader can show that there
exist functions p(x) and 6(x) of class C’ which satisfy (I) and p(x) >0.
Furthermore,

w g\sin20 w
In) p=p|{—— —)]—— — —cos?0
r w/ 2 w
and
1/w ¢ 1/w ¢ w
(Ir,) ¢ =— —+—)+— — — —) cos 20 4+ —sin 26.
2 \r w 2 \r w 2w
The transformation (I) is an extension of the polar transformation
I y(%) = p(x) sin 6(x), (%) = p(x) cos 6(x)
of the normal form of the ordinary wave differential equation
1) ¥+ q(x)y =0

which was introduced by Priifer [6]. For well-known applications of
(I) to the self-adjoint equation (1) the reader is referred to [2, pp.
161-167] and [3, pp. 274-281]. W. M. Whyburn [8] has used this
transformation in studying solutions of a system of two first order
nonlinear equations. More recently F. V. Atkinson [1] has employed
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1 That is, on x = a, y(x) satisfies (1), y and ry’ are of class C’, and y is not identically
zero.
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a special case of (I) in transforming (1’), namely,
y'(x)
(g(x))*?

The first section consists of consequences of the first equation
(I1,), the p-equation. Certain theorems on functional bounds for solu-
tions of equations (1) are given which are extensions of results of
Levinson [5] and Leighton [4]. In the second section the equation
(Il,), the f-equation, will be used to establish sufficient conditions
for oscillation of solutions of (1) and these are compared with nec-
essary conditions established by Leighton [4].

Finally, an asymptotic form of solutions of (1) is obtained.

1) y(x) = p(x) cos 6(x),

= p(«) sin 0(x).

1. Boundedness. The first theorem is an extension of a theorem of
Levinson.

TrEOREM 1. If #'(x) =0, Q(x) =f,,‘]w/r—q/w|dt, x=a,then

p(a)w(a)
w(x)

(IID)  p(a) exp [—Q(x)/Z'] = p(x) = exp [0()/2],

and for each solution y(x) of (1):

(2) 5| =229 exp o2,
w(x)
(3) | y(x)| = pDwle) exp [Q(2)/2].
r(x)
Proor. Equation (II;) yields the inequalities:
_L ﬁ_i‘éiéi 1‘:_1‘_3’
21| r w p 21 r w w

from which (III) is obtained by integration. Inequalities (2) and (3)
follow from (III).

COROLLARY 1.1. If, in addition to the hypotheses of Theorem 1,
Q(x) is bounded for x 2 a, then for each solution y(x) of (1):

(4 y(x) = 0(;;(%)—) and y'(x) = O(;%), asx— ©.

Let w=(gr)V?, then Q(x) =0 and aresult of Leighton is established:

COROLLARY 1.2. If g(x) >0, x =a, g(x) - 7(x) is of class C' and (gr)’' £0,
then
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('ql)m) and y'(x) = 0(—}-) as x— «,

CoroLLARY 1.3. If, in addition to the hypotheses of Corollary 1.2,
w(x) (or r(x)) 4s bounded away from zero, them y(x) (or ¥'(x)) is
bounded.

2. Oscillation. Note that y(x) has a zero only when 6(x) is a multiple
of w. If 6(x) is equal to an integral multiple of 7 at x=x,, then
0'(x1) =w(x1)/r(x1) >0 and, therefore, if 6(x) takes on integral
multiples of 7 for infinitely many values of x, then lim,., 0(x) = .
Therefore, in order that y(x) be oscillatory it is necessary and suffi-
cient that

() @ = o

lim 6(x) = .

The #-equation (II,) yields the inequality:
1/w ¢ 1
(1) vz (C+d)- -

2 \r w

r w

from which the following theorem is readily obtained.

THEOREM 2. If there exists a positive function w(x) of class C' on
x2a such that

o )
z—0 a r w

then every nontrivial solution of (1) is oscillatory.

!
3-1-':2],””,
r w w

As in Corollary 1.2, the special choice w=(gr)'/? gives a simplified
form of (IV) from which the following sufficient condition for oscilla-
tion is derived:

COROLLARY 2.1. If q(x) >0, (¢7)' =<0 on x=a, and

o [f (%)md‘ + —i'ln(q(x)r(x))] =

then every nontrivial solution of (1) is oscillatory.

It is of interest to compare this sufficient condition with Leighton’s
corresponding necessary condition

z 1/2
lim (—f’-) dt = o.
z—® a 1 4
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This corollary establishes that Leighton’s condition is also sufficient
for cases where the function gr is bounded away from zero. However,
in many interesting cases,

lim r(x)q(x) = 0,

Famd ]

for example, the Euler equation where ¢(x) =k/x? and r(x) =1. For
this example Corollary 2.1 shows that oscillation occurs for 2 >1/4.

3. Asymptotic behavior.

THEOREM 3. If k is a positive number such that [T |k/r—q/k|dt< «,
B(x)=(1/2) JZ(k/r+q/k)dt, and y(x) is any nontrivial solution of (1),
then there exists a positive number A and a number a such that

lim [y(x) — 4 sin (8(x) + )] = 0.

Z—r0

ProoF. Let w=Fk in equations (II). From a well-known theorem, it
follows that (1/2) f7°(k/r—q/k) sin 26dt exists (i.e. is finite). Call this
value 4,. Then since p(x) satisfies (I1I,):

lim p(x) = p(a)-e4r = A > 0.

Z—®

Furthermore, from (I{g):
1 z
8(x) = 6(a) + B(x) + 7f (k/r — q/k) cos 206dt.

Hence, if a=0(a)+(1/2)/; (k/r—q/k) cos 20dt, then
lim [8(x) — B(x) — «] = 0.

Finally, it follows that
lim [y(x) — 4 sin (8(2) + «)] = 0.

z— o

Under the hypothesis of Theorem 3, the oscillation or nonoscillation
of y(x) depends on whether or not f(x)—>® as x—w. If

lim | dt/r(t) = oo,

z—® a

then lim,., [Zq(t)dt= o, since |[Z(k/r)dt—[i(q/k)dt| <[Z|k/r

—q/k| dt. Hence B(x)— « as x— «, and there exists a sequence |x,
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such that B(x,) +a=4n—3)1/2, x,—«, and lim,., y(x,) =4>0.
This result is summarized in

CoROLLARY 3.1. If, in addition to the hypotheses of Theorem 3,

z dt
limf —— = o,
PR (0]

then lim sup... y(x) >0, and y(x) oscillates as x— .

On the other hand, if [Idt/r())<o and since |g/k|<k/r
+|g/k—*/r|, then [7|q(t)|dt<  and lim,., B(x) exists. Therefore,
the next result follows easily.

CoROLLARY 3.2. If, in addition to the hypotheses of Theorem 3,

f‘” dt <

J— ©,

« r(t)

then lim, ., y(x) and lim, ., r(x)y’'(x) exist.

For a different proof of an equivalent result by Wintner see [7, p.
58].
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