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Introduction. In this paper the modified polar coordinate trans-

formation,

w(x)
(I) y(x) = p(x) sin d(x),        y'(x) = —— p(x) cos 0(x),

r(x)

will be applied to the self-adjoint equation,

(l) (ry'Y + qy = 0.

For x = a, let q(x) be a function of class C, r(x) be a positive function

of class C, w(x) be a positive function of class C, and y(x) be a

nontrivial solution of equation (l).1 The reader can show that there

exist functions p(x) and 6(x) of class C which satisfy (I) and p(x) >0.

Furthermore,

Kw      o\sin 2d     w' 1
---)—-cos2e
r       wf    2          w J

and

1 / w       q\       1 / w       q\ w'
(IIj)      8' = — ( — + — H-(--)cos20 -I-sin 29.

2\r       w)       2 \r       w) 2w

The transformation (I) is an extension of the polar transformation

(I') y(x) = p(x) sin 0(x),        y'(x) = p(x) cos 9(x)

of the normal form of the ordinary wave differential equation

(10 y" + q(*)y = 0

which was introduced by Priifer [6]. For well-known applications of

(I') to the self-adjoint equation (1) the reader is referred to [2, pp.

161-167] and [3, pp. 274-281]. W. M. Whyburn [8] has used this
transformation in studying solutions of a system of two first order

nonlinear equations. More recently F. V. Atkinson [l ] has employed
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1 That is, oni^a, y(x) satisfies (1), y and ry' are of class C", and y is not identically

zero.
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a special case of (I) in transforming (1'), namely,

y'(x)
(I") y(x) = p(x) cos 6(x),       -—— = p(x) sin B(x).

(q(x))1'2

The first section consists of consequences of the first equation

(Hi), the p-equation. Certain theorems on functional bounds for solu-

tions of equations (1) are given which are extensions of results of

Levinson [5] and Leigh ton [4]. In the second section the equation

(II2), the ^-equation, will be used to establish sufficient conditions

for oscillation of solutions of (1) and these are compared with nec-

essary conditions established by Leigh ton [4].

Finally, an asymptotic form of solutions of (1) is obtained.

1. Boundedness. The first theorem is an extension of a theorem of

Levinson.

Theorem 1. // w'(x)^0, Q(x) =f*\w/r-q/w\dt, xtajhen

(III)      p(a) exp [~Q(x)/2] g P(x) =g p(a)B,(a) exp [Q(x)/2],
» w(x)

and for each solution y(x) of (1):

, ,        p(a)w(a)
(2) I y(x) I   g ^V^ exp [<2(x)/2],

w(x)

, p(a)w(a) r .

(3) I y'(x) I   ^ -^-T^ exP fe(*)/2]-
r(x)

Proof. Equation (IL) yields the inequalities:

1 w      q        p'       1    w      q        w'

2 r       w     '  p  "   2    r       w w

from which (III) is obtained by integration. Inequalities (2) and (3)

follow from (III).

Corollary 1.1. //, in addition to the hypotheses of Theorem 1,

Q(x) is bounded for x^a, then for each solution y(x) of (1):

(4) y(x) = 0[—— J    and    y'(x) = CM—-),      asx-*».
\w(x)/ \ r(x)/

Let w = (qr)1/2, then Q(x) = 0 and a result of Leighton is established:

Corollary 1.2. Ifq(x) >0, x^a, q(x) -r(x) is of class C and (qr)'^0,

then



i955l SECOND ORDER SELF-ADJOINT DIFFERENTIAL EQUATIONS 249

(5') y(x) = o(——\    and    y'(x) = o(~\       as x-» ».

Corollary 1.3. //, in addition to the hypotheses of Corollary 1.2,

w(x) (or r(x)) is bounded away from zero, then y(x) (or y'(x)) is

bounded.

2. Oscillation. Note that y(x) has a zero only when 6(x) is a multiple

of x. If 6(x) is equal to an integral multiple of x at x = Xi, then

B'(x1)=w(xx)/r(xi)>0 and, therefore, if 6(x) takes on integral

multiples of x for infinitely many values of x, then lim*..., 8(x) = oo.

Therefore, in order that y(x) be oscillatory it is necessary and suffi-

cient that

lim 0(x) = oo.

The ^-equation (II2) yields the inequality:

1 / w       q\       1    w      q         l|w'|
(IV)                0'^—( —+ —)-—-J-L

2 \ r       w /       2    r       w        2      w

from which the following theorem is readily obtained.

Theorem 2. If there exists a positive function w(x) of class C on

x ^ a such that

/>xr/ w       q\      \ w       q         \ w'\~\
(— + —)--—   ----\dt= =o,

aLAr       w /      \ r       w           w   j

then every nontrivial solution of (1) is oscillatory.

As in Corollary 1.2, the special choice w= (qr)112 gives a simplified

form of (IV) from which the following sufficient condition for oscilla-

tion is derived:

Corollary 2.1. If q(x) >0, (qr)'^O on x^a, and

Jim [ J X (^j    dt + ± ln(q(x)r(x))] = co

then every nontrivial solution of (I) is oscillatory.

It is of interest to compare this sufficient condition with Leigh ton's

corresponding necessary condition

lim   f   (—)    dt = oo.
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This corollary establishes that Leigh ton's condition is also sufficient

for cases where the function qr is bounded away from zero. However,

in many interesting cases,

lim r(x)q(x) = 0,

for example, the Euler equation where q(x) =k/x2 and r(x) = 1. For

this example Corollary 2.1 shows that oscillation occurs for &>l/4.

3. Asymptotic behavior.

Theorem 3. If k is a positive number such that /* | k/r — q/k \ dt < oo,

/3(x) = (1/2)fa(k/r+q/k)dt, and y(x) is any nontrivial solution of (1),

then there exists a positive number A and a number a such that

lim [y(x) - A sin (B(x) + a) ] = 0.
J—»oo

Proof. Let w = k in equations (II). From a well-known theorem, it

follows that (l/2)J?(k/r-q/k) sin 2ddt exists (i.e. is finite). Call this

value ^4i. Then since p(x) satisfies (Hi):

lim p(x) = p(a) e^i = A > 0.
Z—♦ «

Furthermore,  from   (II2):

1   rz

6(x) = 8(a) + 0(x) H-I    (k/r - q/k) cos 26dt.
2   J a

Hence,  if a=6(a) + (l/2)f'(k/r-q/k)  cos 2Bdt,  then

lim [0(x) - 0(x) - a] = 0.
x—♦»

Finally, it follows that

lim [y(x) — ^1 sin ($(x) + a)] = 0.

Under the hypothesis of Theorem 3, the oscillation or nonoscillation

of y(x) depends on whether or not )3(x)—»«o  as x—+oo.  If

lim   j    d//r(/) = oo,

then lim,^ tfq(t)dt=«>, since \f:(k/r)dt~ra(q/k)dt\^f!\k/r
— q/k | d/. Hence |3(x) —> oo as x—»oo , and there exists a sequence {xn}
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such that /3(x„)+a = (4M — 3)x/2, x„—>», and lim*.., y(x„)=^4>0.

This result is summarized in

Corollary 3.1. If, in addition to the hypotheses of Theorem 3,

/•x dt—- = °°.

o   f(0

then lim sup*,*, y(x) >0, and y(x) oscillates as x—>-oo.

On the other hand, if f*dt/r(t)< <x> and since \q/k\^k/r

+1 q/k — k/r\, then /j* | q(t) | dt < oo and lim^.,, j3(x) exists. Therefore,

the next result follows easily.

Corollary 3.2. If, in addition to the hypotheses of Theorem 3,

/"° dt
. r(t)

then lim*..,,, y(x) and lim^^ r(x)y'(x) exist.

For a different proof of an equivalent result by Wintner see [7, p.

58].
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