
ON A THEOREM OF SZEGO

HENRY HELSON1

The subject of this note is an extension of the following well-known

theorem of Szego [8 ]: Suppose the number of distinct coefficients in a

power series

00

«(r, x) = £ akrheikz

k—0

is finite. Assume that the analytic function u(r, x) can be continued

across some arc of the boundary of the unit circle. Then the ak are equal,

beyond some point, to the terms of a periodic sequence.

A number of generalizations and related results have been pub-

lished [2; 3; 4; 5; 9], of which we mention in particular that of

Duffin and Schaeffer [4]; these authors replace the hypothesis that

u(r, x) is analytically continuable by the weaker assumption that the

function is bounded in some sector of the circle. A theorem of the

same type, but apparently not implied by the others, was proved in

[5 ]: If the harmonic function

DO

u(r, x) =   £ akrikieikx

has, as before, only finitely many distinct coefficients, and satisfies the

growth condition

/■ 2t | u(r, x) | dx ^ M < oo (r < 1),
o

then the sequence {ak} coincides with some periodic sequence except in

a finite set of indices.

The purpose of this paper is to give a common generalization of

these theorems, exhibiting (we believe) the essential features of the

problem and proved in a new way.

Theorem. Let u(r, x) = ££.-» akr^eikz have only finitely many dis-

tinct coefficients, and for some arc (a, /3) of the circle satisfy

I     | u(r, x) | dx g M < oo (r < 1).
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Then [ak\ is ultimately periodic to the right, and ultimately periodic to

the left.

As far as we have verified, our method of proof yields all those gen-

eralizations of Szego's theorem in which the coefficients are supposed

to be bounded. The theorem of the author referred to above is ob-

tained by taking for (a, j3) the entire circle. Then it is necessary to

remark that if a sequence of Fourier-Stieltjes coefficients is periodic

to the right and to the left, it must coincide except in a finite set of

indices with a single periodic sequence.

The proof is based on two facts.

Theorem of F. and M. Riesz [6]. Let p be a complex bounded

Borel measure2 on the circle for which the Fourier-Stieltjes coefficients

1   r2r
bn = — I     e~inxdp(x)

2irJo

vanish for all sufficiently large positive (pr all large negative) indices.

Then p is absolutely continuous with respect to Lebesgue measure?

Lemma. Let {nk} be an increasing sequence of integers, and let p

and y be complex bounded measures on the circle. Suppose that

/> 2i p 2t<t>(x)dy(x) = lim   J      e~inkx^(x)dp(x)
0 *=«•   J 0

for every continuous function <f> on the circle. Then y is singular4 with

respect to Lebesgue measure. The same conclusion holds if for two in-

creasing sequences \ nk} and {mk} the measures satisfy

Ji2t p It
<p(x)dy(x) = lim   I       (erinkx — e-imtx)<t>(x)dp(x)

o *=» J 0

for all continuous <f>.

The lemma seems to be new, and we shall sketch a proof. It is

enough to consider the hypothesis in its first form, the second being

quite analogous. For the absolutely continuous part p„ of p, we have

2 The reader who speaks of functions of bounded variation rather than of complex

measures will have no difficulty in interpreting our terminology.

* A simple proof of the result in [5] can be given using this theorem. Conversely,

the Riesz theorem can be proved using the main argument in [S]. We were unaware

until recently how closely related that argument is to the one originally employed in

the Riesz paper.

4 We mean that y has no absolutely continuous part, but it may contain point

masses.
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by the Riemann-Lebesgue Theorem

/> 2r e-inkx<j>(x)dpa(x) = 0.

o

Consequently for the singular part p„

/, 2r /. 2r
<t>(x)dy(x) = lim   I      e-inkx<b(x)dpt(x).

0 k=<°   J o

Fix a point x on the circle and a small positive number e. As 0 ranges

over the continuous functions vanishing outside the interval (x — t,

x-f e) and bounded by one in absolute value, the supremum of

In 2t
I     4>(x)dy(x)

Jo

is exactly the total variation of 7 over (x— e, x + e). At the same time

lim    I      e-inkx<b(x)dp,(x)
t=» IJ 0

never exceeds the variation of p., over the same interval. Since p, is a

singular measure, for almost every point x this variation is o(e) as e

tends to zero. Hence the variation of 7 is o(e) for almost all x, and this

is possible only if 7 is itself singular, as we had to show.

We proceed to the proof of the main theorem. Since only finitely

many ak are distinct, for each positive integer p there are arbitrarily

large distinct indices m and n such that

0m—1  ==   0n—li      * *  1 0m—p  =  an—p.

If, contrary to the conclusion of the theorem, [ak] is not periodic to

the right, we can choose m and n so that

0m  7^  0n-

We choose and fix sequences m(p) and n(p) satisfying these conditions

and tending to infinity with p.

For each p define the new sequence

Ok —  0m+fc —  0n+i-

Evidently the numbers b\ assume only finitely many values, and so

are bounded from zero when they do not vanish. Moreover

b'9^ 0,        ftli =   • • • = b-p = 0.
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By a diagonal process we can find a sequence of integers pi, p2, ■ • •

tending to infinity such that the limit

bk = lim bk
y«=»

exists for each k. Clearly

bo 7* 0,        bk = 0 (all h < 0).

The sequence {bk} is the main object of study.6

Let e be a positive number smaller than the length of the arc (a, B).

Construct a triangular function equal to one at the origin, decreasing

linearly to zero at the points +e/2, vanishing elsewhere in (— t, it),

and periodic. Denote by / the translate of the triangular function

having its peak at the center of (a, B). By computation we can verify

that its coefficients satisfy

i r2T
Ck = —\     f(x)e~ikxdx = 0(\/k2).

2ir J o

Form the convolution

dk =   2-f bnCk—n',
n=»0

we shall prove in several steps that all the dk vanish.

Lemma. The dk are the Fourier-Stieltjes coefficients of a bounded

complex measure p on the circle.

For r < 1 form the continuous function

«r(x) = f(x)u(r, x).

Then

/i 2r /./»
| u(r, x)f(x) | dx <  I     | u(r, x) \ dx g M,

0 J a

so the norms of the uT are bounded in L(0, 27r). By the Helly theorem,

there is a bounded complex measure v on the circle and a sequence of

values of r increasing to one such that

/> 2t /» 2t
(j>(x)dv(x) = lim   I      ur(x)4>(x)dx

0 "0

* An argument involving translation of the coefficient sequence is used in the origi-

nal proof of Szego's theorem [l, pp. 315-319]. The weak limiting process, however,

is new.
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for every continuous periodic function <f>. Choosing an exponential

for 0,

I     -2* I fir
— I     er'*xdv(x) = — lim   I      u(r, x)f(x)e~xqxdx
2ir J o 2ir J o

00 00

= lim   £ 0ir!*!<;,_* =   £ akcq-k-
fc——00 A——00

Thus the Fourier-Stieltjes coefficients of v are given by the convolu-

tion of the ak and the ck. The bk were obtained from the ak by a

process of translation and subtraction. Recalling the construction,

which was carried through by means of sequences m(p) and n(p), it

is easy to verify that the typical coefficient of the measure

(g-im* _ g-inx)dv(x)

is given by the convolution

00

£ bkcq-k.
Jfc-«— 00

As p tends to infinity through the sequence of values pi, p2, • • • the

sum tends to

00

dq   =    £  bkCq-k.
fc—0

But the total variation of the measures is uniformly bounded, and so

by the Helly theorem again an appropriate subsequence of measures

tends weakly to a measure p. whose coefficients are the dq.

Lemma. The measure p. is singular with respect to Lebesgue measure.

Indeed, p. is the weak limit of a sequence of measures of the form

(g-imz _  e-i»*)ivfx)

as m and n tend to infinity in a certain way. The first lemma asserts

directly that p. is singular.

Lemma. The singular measure p, is also absolutely continuous.

If K is a constant larger than any | bk\, then

00 q

\dq\   :g*£ |-v.* |   = K  £   | c* | .

We know that cjb = 0(l/&2), and hence for large negative q
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dq = 0(1/?).

Consequently

E l<M2< »•

It follows that
o

E d"fiiqx
g—    00

is the Fourier series of a square-summable function, and a fortiori of

an absolutely continuous measure. Hence the complementary sum

00

E d«eiqx
8-1

is a Fourier-Stieltjes series, by the Riesz theorem of an absolutely

continuous measure. Thus the full series

CO

E d<,eiqx
g=— oo

is the Fourier-Stieltjes series of an absolutely continuous measure, as

we had to show.

A measure which is both singular and absolutely continuous is the

zero measure, so the coefficients dk all vanish. That is, for all q

oo

E bkcq-k = 0.
t-o

We want to conclude that all the bk are zero.6 Observe that if x is

sufficiently close to the origin, the numbers ckeikx are the Fourier

coefficients of a translate of the triangular function /, which still

vanishes on (a, B). Applying the preceding considerations anew, we

have for each q
CO

E btc^o-ku = o,
fc-0

or
00

E bke-ikxcq-k = 0.
fc-0

• The argument from this point is intended to establish this fact as conveniently

as possible. The conclusion is well known. It is nevertheless interesting that a direct

proof, not involving analytic functions, can be given, based purely on the theory of

linear spaces.
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More generally, if h is any summable function vanishing outside a

certain neighborhood of the origin,

oo p 2x

£&* I     h(x)e~ikxdxcq-k = 0.
Jfc=0       J 0

Denoting the Fourier coefficients of h by ek,

00

£ bkekcq-k = 0.
fc-0

If we choose for h a triangular function, then the sequence {foe*;} is

square-summable, and represents the Fourier coefficients of a square-

summable function H. The last convolution then expresses the fact

that the product fH vanishes identically. Since / is a triangular func-

tion, H must vanish on an arc of the circle. Because H is the boundary

function of an analytic function in the unit circle, H must vanish al-

most everywhere. None of the coefficients ek is zero, and so the bk van-

ish, in particular bo. But bo is known to be different from zero. The

contradiction stems from the assumption that {ak} was not periodic

to the right. Similarly we can show that {ak} is periodic to the left,

and the proof of the theorem is complete.

A new situation arises when the assumption that the coefficients ak

are bounded is replaced by some condition of arithmetic nature. The

theorem of Carlson and Polya [3; l] is of this type: if an analytic

function in the circle has integral coefficients and can be analytically

continued across some part of the boundary, then it is rational. Con-

tinuing work of Pisot and others, Salem [7] proves a number of theo-

rems about power series with integral coefficients which exhibit

clearly the algebraic nature of the problems. Moreover he gives an

example of a power series with integral coefficients, analytic in the

circle, and bounded in a sector, which is not a rational function. Thus

no extension of the theorem of Carlson and P61ya analogous to the

generalization we have found of Szego's theorem can be true, in

spite of the similarity in the statement of the two theorems.
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