
POWER-ASSOCIATIVE  RINGS   OF  CHARACTERISTIC  TWO

LOUIS A. KOKORIS

1. Introduction. Sufficient conditions for associativity of powers in

commutative rings of characteristic prime to two have been given

elsewhere.1 We shall state the known results in the following theo-

rems.

Theorem 1. Let 31 be a commutative ring whose characteristic is prime

to 30 and let x2x2=xzxfor every x of 31. Then 31 is power-associative.

Theorem 2. Let 31 be a commutative ring whose characteristic is 3

and let x2x2=xsx and 2[(xy)x]x2 + (x2y)x2 + 2(xy)x3 = xiy + (x3y)x

+ [(x2y)x]x + 2 { [(xy)x]x\x for every x in 31 and every y in 31 which is

a power of x. Then 31 is power-associative.

In case 31 is an algebra we have the following corollary to Theorem 2.

Corollary. Let 31 be a commutative algebra over afield % whose char-

acteristic is 3, % have more than three elements, and x2x2=x3x, xix2=xix

for every x in 31. Then 31 is power-associative.

Theorem 3. Let % be a commutative ring whose characteristic is 5

and let x2x2 = xlx, xkx2 = xhxfor every x in 31. Then 31 is power-associa-

tive.

These theorems are important tools in the study of power-associa-

tive rings and algebras, and it seems desirable to complete this set

of conditions for power-associativity by obtaining the corresponding

theorem for rings with characteristic two. The result may be stated as

Theorem 4. Let % be a commutative ring whose characteristic is 2

and let (x2y)y = (y2x)x and x2n~lx2"~l = x2" for every x, y in 31 and every

positive integer n. Then xxx" = xx+" for every x in 31 and all positive

integers X, p.

When 31 is an algebra we have the following result.

Corollary. Let 31 be a commutative algebra over a field % of char-

acteristic 2 and let ^ contain at least four elements. Then 31 is power-
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associative if x2"   x2"    =x2" for every x in 21 and every positive integer n.

2. Associativity of fourth powers. Consider a commutative algebra

21 over a field g whose characteristic is 2 and suppose that x2x2=x3x

for every x in 2t. Then replace x by x+\y where X is in g and obtain

(x+\y)2(x+\y)2=x2x2 + \yy2= [(x+Xy)2(x+X;y)](x+Xy) = (x3

+\x2y+X2xy2+\3y3)(x+\y)=xi+\x3y+\(x2y)x+\2(x2y)y+\2(xy2)x

+X3(xy2)y+X3x;y3-|-X4;y4. The result is a polynomial in X which we

write as-4X3+i?X2-|-CX =0 where A =(xy2)y-\-xyz, B = (x2y)y-\-(xy2)x,

and C = x3y-\-(x2y)x. If g contains at least four elements it follows

that A =B = C = 0 and we then have

(1) (x2y)x = x3y

and

(2) (x2y)y = (y2x)x.

Thus we see that once Theorem 4 is established the corollary will fol-

low.

Now replace y in (2) by y-\-z so that (x2y)y-{-(x2z)y-\-(x2y)z

-\-(x2z)z = (y2x)x+(z2x)x. By (2) we conclude that

(3) (x2y)z = (x2z)y.

As a consequence of relation (3) we have

Lemma 1. Let 21 be a commutative ring whose characteristic is 2, let

(x2y)y = (y2x)x and x^x* = xx+" for X+/x<w, w2:5. Then xn~axa=xnfor

every positive odd integer a<n and xn~&xff =xn~yxy for all positive even

integers j3, y <n.

For proof observe that if y =x, z=xn~3 in (3) then x3xn~3 = (x2xn~3)x

= xn. If we assume xn~axa=xn for a odd, then y=xa, z=xn~(-a+2) in

(3) yield xa+2xn~(a+2) = x"~axa and we have proved the part of the

lemma involving odd integers.

When y=x2, z = xn~i in relation (3), xn~ixi = xn~2x2. Assume

x*-dxf>=xn-(f>-»x<,(i-i) and Set y=x&, z=xn~^+2\ Then xn-W+vxf>+*

= xn_V. This completes the proof of the lemma.

A corollary of Lemma 1 is

Lemma 2. Under the hypotheses of Lemma 1, if xxx" — xk+", X+/x <n,

for n a positive odd integer, then x^x11 =xK+l' for X+/x =n.

It is only necessary to show that xn-ax" = x"-^ for a odd and (3

even. This follows from the fact that n is odd, n — a is even. Then

write j3=«— a.

If n is an even integer it has the form n = 2'k where k is an odd
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integer. At this point we are able to obtain the following limited re-

sult.

Lemma 3. Under the hypotheses of Lemma 1, if xxxM = xx+", \+p<n,

and if n = 2k, k odd, then xxx" = xx+'' for X+/x=«.

The substitution y = xk~1 in (2) yields xk+1xk~1=x2k~1x = x2k. Since

k — 1 is an even integer, the result follows from Lemma 1.

It is seen that given relation (2) the assumption of associativity of

fourth powers implies associativity of fifth powers by Lemma 2. Then

Lemma 3 implies sixth power associativity and a second application

of Lemma 2 gives the associativity of seventh powers. However,

associativity of eighth powers does not follow.

3. Associativity of 2nth powers. Let us now consider the hypothesis

x2" x2" = x2", n>l, and that all powers with less than 2" factors

are associative. In order to eliminate a large number of parentheses

we shall write ab ■ ■ ■ x instead of aRb ■ ■ -Rx where Rn denotes right

multiplication by n. Then the substitution of x+Xy for x in the left

side of the equality yields x2" x2" +X2ny2"~1y2" . The quantity

x2" may be written x2"_1x2n_2x2"-3 • • • x2xx. Substitution of x+Xy for

x in x2" 'x2* l = x2" gives the polynomial identity Ei"^1 X*.4" = 0 where

A" is the sum of all terms obtained by replacing factors x2"-* by

yin-k m x2"-1x2"-2x2n-3 . . . x2xx so that there are i factors y. There

are precisely two ways of making this substitution and thus each A"

is the sum of two terms.

Preliminary to showing that each .4" = 0, we use (2) and (3) to see

that xiry2a=x2rx2ry2s=x2ryux2r=xiryay,=x2ryx2ry, = (x2rys)2 for 2r

+4s<2n. The result is stated as relation

(4) xiry2s = (x2ry*)2.

The study of the coefficients A? is divided into two parts depending

on whether i is odd or even. If i is odd, -4? = zf 'zf-2 ■ • • z\-\yx

+zX zjf* • • • z£_ixy where Zy is either x or y. By (3), A"=x2"~i~1

•yl~lyx+x2 ~i~1yi~lxy. Since i is an odd integer, it follows that

2" — i-l=2p and i — 1 =2q for integers p and q. Also 2p + 2q = 2n-2

and so p+q = 2n~1 — l. Therefore, either p or q is even and we may

use (4) to write A" = (xpy")2yx+ (xvy")2xy. Relation (3) then implies

A1=0.
When i is an even integer it is necessary to consider only the case

where the last two factors of one term of A" are x and the last two

factors of the other term are y and we may then use (3) to write

A"=x2"~i~2yixx+xin~iyi~iyy. The integer i is even and therefore we

may write 2p=2"—i and 2q=i. It follows that p+q = 2n~1 and p and
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q are both even or both odd. An application of (4) gives 4" = (xp~1yq)2

• xx + (xpy9_I) 2yy.

Let us suppose that p and q are both odd. Then (xp~1y")2xx

= x2(xp~lyq)(xp~lyq) = (xp+1yq)(xp~1yq) = xp+1(xp~1yq)yq = x2pyqyq where

we have used (2), (3), and the fact that p—1 and p+1 are even.

Similarly, (x'y5-1)2yy = y2qxpxp and (2) implies A" = 0. Thus we have

shown that .4" = 0 unless i and 2" — i are multiples of four.

We now proceed to show simultaneously that the remaining A" are

equal to zero and that the relation

(5) x^y2*-1-^ = y2^1*2*-1-1*

holds for every k>l. The proof is by induction and we note that

when k = 2, (5) reduces to (2). At this point we also have (5) for k=3,

since then E«-i ^4f=0 and thus ^4?i = 0. The statement ^4 = 0 is

exactly (5) for k=3.

Assume now that -4S" = 0 for all n, and every i not a multiple of

2*~2. Since E£i~%t_1 = 0, 4£4=0 and (5) holds for k-1. Then
consider the case i = 2k~2r where r is odd. It follows that 2n — i = 2k~2s

with 5 odd, and x2i_V~2r-2y;y =x*^'y*~*<-r-»y*~*-*yy = rxsyr-iyk-i

■y2k~1-1y=z2k~1y2h~2-1y where we have used (3), (4), and z = x«y_1.

By the hypothesis of our induction (z2*-^2*-2-J)y =y2* !z** 2_1z and

then (3) and (4) may be used to show that this expression is equiva-

lent to y2*~2rx2*~2"-2xx, the second term of A". Thus A" = 0 for i a

multiple of 2*~2 and therefore we have (5) for all values of k.

Using (5) it is possible to prove

Lemma 4. Under the hypotheses of Lemma 1, if xxx" = xx+", X +p, < m,

w^6 and m = 2'k, k odd, then xxx" = x^+" for \-\-p. = m.

For if k=t + l and y=xk~l in (5), it follows that x2^-1"2'-1^*-1

= x(*-1)2'x2'-1x. Consequently, xnlk-{k~mxk-i =x2'*_ gince k is odd,

fe — 1 is even and the conclusion follows from Lemma 1 and the proof

of Lemma 2. Note that Lemma 3 is the case t = l of Lemma 4.

The results of the lemmas combine to give Theorem 4 and we have

already shown that the corollary follows. We now proceed to show

that the hypotheses of our theorem are actually necessary.

4. Necessity of the hypotheses. In order to show that the assump-

tion of the associativity of 2"th powers is necessary, we shall con-

struct an algebra in which all powers are associative except powers

with 2" factors. Moreover, this construction is valid for every n>l.

Let 21 be the algebra over a field 5 whose characteristic is 2 and

let  g contain at least four elements. Also let 21 have the basis
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a, a2, a3, • • ■ , a2" and a2"_1o2"-1. The multiplication table is given by

axa"=ax+" for \+p <2n, aV = 0 for X+m>2", a2"-aaa=a2'' for a odd,

a2n-pap = a2n-iatn-i for p even, and a2"_1a2"_1ax = 0 for every X. The

general element x of 31 may be written x= E«-i 7»<7-<+8a2"-1a2"~1.

We compute x2 = E«-i-17«a2'+'Y2n"ia2" fl2"   and then

3 2"^"1   ^     2 „    I

t=l 3=1

It follows that

2n-l—1   2»—1    2"—1    „ „.    .   ,
4 '^      V-i     V-(      2 2>   3   ft

1  =   L    L   L 7.7f7*a a a .
1=1 3=1      *=1

Since 31 has characteristic 2 and because of the symmetry In

j and k of the expression x4 we have x4= E?"i_1 E2=i_1 y\y]a2ia2i.

Due to symmetry we again have two like terms whenever i^j, so

that x4= E?="i-1 7*a4i+72»-2a2n_1a2"_I. On the other hand

on—1—1 on—1— 1 on—1—1        on—1—1
2   2 •%-, 2   2.^       2   2j ^ v->        2   2   2t   2j 4

x x = 2^ 7i«    2_, 7j«   =  2s     2-i ytyia a   = x ■
t=l 3=1 t_l ;=1

Having the associativity of fourth powers and the hypothesis on

the number of elements in SJ, we use Lemmas 2 and 3 to see that

powers with five, six, and seven factors are associative. Furthermore,

Lemma 1 implies that if x4x4=x8, then all eighth powers are associa-

tive.

Computing,   we   have

9'*—"2—1   on—1—1 on—3—1 „_.        __i
4    4 2^      2V-V*     4   4   ii   ij        2 v-« 8   8.     ,        8 2n '    2* l

x x   =   2-,     2-i 7i73« a,   =  2_,   7ta    + y2"~>a     a
t'=1 j=d i™l

and x7x= E%~-,«8-i 7n ' ' ' 7»sail " ' ' aii- Due to symmetry ii=i2

= • • ■ =ii = i and so x4x4 = x7x = x8.

Assume now that we have the associativity of 25_1st powers for

q<n and therefore

2"—1

X2«-i =        ^       yh . . . yh,-iah . . . ah"-1
tl.---,l'24_1=l

2„-S+l-l        irl       jp4j ^ 2„_!    2„_,

=      2/     7f      o      + 72"_8+1 a     a
t-i

Then Lemmas 2 and 4 give the associativity of powers with less than

2" factors. It follows that
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25-l 2(f-l 24 2"^       2q    2q( ^ jn-l       2»-l

x        x = x    =   2-1 "ft a     + 72n_a a      a
i=l

Thus all powers involving less than 2n factors are associative, but

2"th powers are not associative.

The hypothesis (x2y)y = (y2x)x is also necessary. Albert has given

an example2 of a commutative algebra over the field of two elements

in which fourth powers associate but no higher powers associate.

This is an example in which relation (2) does not hold. But then the

conclusions of Lemmas 1 and 2 do not follow.

5. Jordan algebras of characteristic 2. As an application of our

theorem we prove the power-associativity of a Jordan algebra over a

field containing at least four elements and with characteristic 2. A

Jordan algebra is a commutative algebra whose elements satisfy the

identity (x2y)x = x2(yx). This identity may be linearized to give

(6) (x2y)z = x2(yz).

The value z = y in (6) yields (x2y)y=x2y2 and by symmetry (y2x)x

— x2y2 so relation (2) holds. Assume xxx"=xx+" for X+m<2" and let

y=x2"-3, z=x in (6) to obtain x2" = x2x2"~2. Lemma 1 implies

x2"_1x2"-1 = x2x2"-2 and then Theorem 4 implies power-associativity.

University of Washington

2 See the first paper of footnote one.


