RIGHT ALTERNATIVE RINGS OF
CHARACTERISTIC TWO

R. L. SAN SOUCIE

1. Introduction. Right alternative rings have recently been in-
vestigated by Skornyakov, Kleinfeld, and the author. Skornyakov
[3]* showed that a right alternative division ring of characteristic
not two is alternative. The author, in [2], extended this result by
proving that a right alternative division ring of characteristic two is
alternative if (and only if) it satisfies

(1.1) w(xy-x) = (wx-y)x

for all w, x, y and showed by example that (1.1) can fail to hold. Prior
to this, Kleinfeld [1] generalized the Skornyakov theorem in another
direction by assuming only the absence of one sort of nilpotent ele-
ment. We now specify Kleinfeld’s result in detail.

Let F be the free nonassociative ring generated by x; and x; and
suppose that R is any right alternative ring. Kleinfeld calls ¢, %, v in
R an alternative triple if (i) there exist elements a[x1, x2], B[x1, %],
v [x1, x2] in Fand elements 7y, 7, in R such thatt=a[ry, 2], u =B [r1, 72],
v=+[r1, 72| and (ii) if s; and s, are elements from an arbitrary alterna-
tive ring, and if ¢/ =a(s1, s3], ' =B[s1, s2], ¥’ =7[s1, 5], then (', u’, v)
=0. The ring R is said to have property (P) if ¢, u, v an alternative
triple in R and (¢, %, v)2=0 imply (¢, %, v) =0. By the definition of an
alternative triple, an alternative ring has property (P). Kleinfeld’s
result is the converse, assuming characteristic not two; that is, a
right alternative ring of characteristic not two is alternative if (and
only if) it has property (P).

We herein extend this line of investigation by proving that a right
alternative ring of characteristic two, satisfying (1.1), is alternative
if (and only if) it has property (P). The methods are mainly those
used in [2], coupled with two essential lemmas (numbered 4 and §
in our paper) due to Kleinfeld. Following [2], we say that R is
strongly right alternative if R is a right alternative ring satisfying (1.1).
Throughout the paper, R will always denote such a ring, with the
additional hypothesis that R have characteristic two.

2. Previous results. We begin with the following definition due to
Skornyakov [3]. Let a and & be fixed elements of R. Then we shall
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denote by u(a, b) the set of all elements x in R such that xa-b=x-ba.
We observe that %(a, b) is closed under addition.

LeEMMA 1. The following identities hold in R:

(2.1) (w, x, xy) = (w, %, y)x,

(2.2) (w, x, y2) + (w, 9, x2) = (w, %, 2)y + (w, ¥, 2)%,

(2.3) (w, 2% 3) = (w, %, (, ),

(2.4 ((w, 2, ),%, ) = (w, x, 9)(%, 3),

(2.5) (wx, 9,2) = w(x, v, 2) + (w, v, 2)x + (w, %, (3, 2)).

LeEMMA 2. x is in u(a, b) if and only if (x, a, b) =x(a, b).

LeMMA 3. If x is in u(a, b) and x is in u(a, ba), then x(a, a, b) =0.
LeEMMA 4. (x, a, b) and (x, a, b)a are in u(a, b).

LemMA 5. If both vy and xy are in u(a, b), then (x, a, b)y =0.

Proofs of Lemmas 1-3 may be found in [3], and proofs of Lemmas
4 and 5in [1].

As in [2], we define the mapping 7 (of R into R) by xm = (x, a, b),
for fixed a, b in R. Then (2.5) may be written

(2.6) (wx)r = w-ar + wr-x + (w, %, (g, b)).

3. The main theorem. We henceforth assume that R, a strongly
right alternative ring of characteristic two, has property (P).

LeEMMA 6. (a, b) =0 implies (a, a, b) =0.

ProoF. Assuming (a, b) =0, we have that (xa, a, b) =x(a, a, b)
+(x, a, b)a, using (2.5). Lemma 4 can be invoked to show that
x(a, a, b) is in u(a, b). But (a, a, b) is also, so that, by Lemma 3,
(x, a, b)(a, a, b) =0. Setting x =a and using property (P) proves the
lemma.

For convenience, we set ¢ =(a, a, b), d=(a, b), and e=(d, a, d). This
enables us to state

LemMma 7. (i) dr=(d, a, b) =0, (ii) (@, a, x) =((a, %), a, b), (iii)
cd=dc, (iv) (¢, ¢, d)=(d, d, ¢c) =0.

Proor. (i), (ii), and (iii) are proved in [1, Lemmas 5 and 7] since
Kleinfeld does not use the assumption on the characteristic until he
reaches his equation (4). Then (iv) follows from Lemma 6.

LemMA 8. For arbitrary u in u(a, b), (d, ¢, u) =eu.
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Proor. Observing that ur =ud, and ar =c, we compute (d, a, u)w
and obtain

3.1) (@, a, w)yw = (d, a, u)d + (d, ¢, u) + eu.

However, Lemma 7(ii) shows that (d, @, #) is in #(a, b) and thus the
lemma follows from Lemma 2 and (3.1).

LEMMA 9. e=0.

Proor. The first three sentences in the proof of Lemma 7 in [1]
show that ec=0. Hence (de-c)e =0, using (1.1). We now apply Lemma
8 with #=e and get e?=(d, ¢, ¢) so that e?=de-c. Hence? ¢¥=0, so
e*=0. But property (P) implies ¢2=0, and, again, e=0.

LemMma 10. (¢, a, d) is in u(a, b).

PRoOF. As in the proof of Lemma 8, we compute (x, ¢, d)7 and ob-
tain

3.2) (x,a,d)7 = (x,a,d)d + ((x,a,0),a, d) + (x,¢,d) + (%, ad, d).

Substituting x=c¢ in (3.2) gives (¢, a, d)r=(c, a, d)d+08, where
0=(cd, a, d)+(c, d, ad) =ce+(c, a, d)d+(c, d, (a, d))+(c, d, ad).
However, (¢, d, ad) =(c, a, d®) + (¢, a, d)d =(c, d, (a, d)) +(c, a, d)d, by
(2.2) and (2.3). Hence 6 =0 and the proof is complete.

We can now prove our main result.

THEOREM. Let R be a strongly right alternative ring of characteristic
two. Then R is alternative if and only if it has property (P).

ProoF. The necessity is obvious. For the sufficiency, we begin by
showing that ¢? is in u(a, b). Indeed, (ca, a, b) =c*+cd-a+(c, a, d).
However, Lemma 7(ii) shows that (d, a, ¢) is in u(a, ). But d-ca is
in so that dc-a=cd-a is in, and (c, @, d) is in by Lemma 10. Hence ¢?
is in u(a, b). However c is also in u(a, b), and thus, using Lemma §,
cd-¢=c2d=0. But cd is in u(a, b) and another application of Lemma 5
gives (¢d)?=0, from which ¢d=0.

Now? ((a, a, b), a, b) =cd =0 and linearization yields ((e, @, x), a, b)
=(c, a, x). Put x =ab and obtain that (ca, a, b) =0. This implies that
c2=(c, a, ba) and therefore ¢? is in u(a, ba). Lemma 3 yields ¢*=0,
from which ¢*=0, and, using property (P), ¢?=0, ¢=0.

2 It is an easy matter to verify that a strongly right alternative ring of arbitrary
characteristic is power-associative. Therefore, powers of a single element are well-
defined and we may write €3, ¢, etc. without ambiguity.

# The last paragraph of our proof is the same as that in [1 ], but we repeat the few
lines here for completeness.
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ON AN ITERATIVE PROCEDURE FOR OBTAINING THE
PERRON ROOT OF A POSITIVE MATRIX

RICHARD BELLMAN

1. Introduction. The purpose of this paper is to present a new
iterative procedure for obtaining the characteristic root of largest
absolute value of a positive matrix.

The origin of the method is as follows. There is a result of von
Neumann [7], a generalization of his fundamental min-max theorem
in the theory of games [8], to the effect that

x, A x, A
) Min Max A% _ Max M 249
v z (%, By) z v (=, By)

where the variation is over the region defined by

(a) x; 20, 2o %=1,
2) R: ‘:‘
(b) 3 =0, doyi=1,

=1
and it is assumed that B has the property that
(%, By) 2b>0

for all (x, y) ER.

It was observed by Shapley [6] that this result can be obtained as
a by-product of the theory of “games of survival,” cf. [1;5; 6], which
requires only the fundamental min-max theorem, by considering the
equation for A,
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