RIGHT ALTERNATIVE RINGS OF CHARACTERISTIC TWO

R. L. SAN SOUCIE

1. Introduction. Right alternative rings have recently been investigated by Skornyakov, Kleinfeld, and the author. Skornyakov [3]¹ showed that a right alternative division ring of characteristic not two is alternative. The author, in [2], extended this result by proving that a right alternative division ring of characteristic two is alternative if (and only if) it satisfies

$$(1.1) w(xy \cdot x) = (wx \cdot y)x$$

for all w, x, y and showed by example that (1.1) can fail to hold. Prior to this, Kleinfeld [1] generalized the Skornyakov theorem in another direction by assuming only the absence of one sort of nilpotent element. We now specify Kleinfeld's result in detail.

Let F be the free nonassociative ring generated by x_1 and x_2 and suppose that R is any right alternative ring. Kleinfeld calls t, u, v in R an alternative triple if (i) there exist elements $\alpha[x_1, x_2]$, $\beta[x_1, x_2]$, $\gamma[x_1, x_2]$ in F and elements r_1, r_2 in R such that $t = \alpha[r_1, r_2]$, $u = \beta[r_1, r_2]$, $v = \gamma[r_1, r_2]$ and (ii) if s_1 and s_2 are elements from an arbitrary alternative ring, and if $t' = \alpha[s_1, s_2]$, $u' = \beta[s_1, s_2]$, $v' = \gamma[s_1, s_2]$, then (t', u', v') = 0. The ring R is said to have property (P) if t, u, v an alternative triple in R and $(t, u, v)^2 = 0$ imply (t, u, v) = 0. By the definition of an alternative triple, an alternative ring has property (P). Kleinfeld's result is the converse, assuming characteristic not two; that is, a right alternative ring of characteristic not two is alternative if (and only if) it has property (P).

We herein extend this line of investigation by proving that a right alternative ring of characteristic two, satisfying (1.1), is alternative if (and only if) it has property (P). The methods are mainly those used in [2], coupled with two essential lemmas (numbered 4 and 5 in our paper) due to Kleinfeld. Following [2], we say that R is strongly right alternative if R is a right alternative ring satisfying (1.1). Throughout the paper, R will always denote such a ring, with the additional hypothesis that R have characteristic two.

2. Previous results. We begin with the following definition due to Skornyakov [3]. Let a and b be fixed elements of R. Then we shall

Presented to the Society, May 1, 1954; received by the editors October 12, 1954.

¹ Numbers in brackets refer to the bibliography at the end of the paper.

denote by u(a, b) the set of all elements x in R such that $xa \cdot b = x \cdot ba$. We observe that u(a, b) is closed under addition.

LEMMA 1. The following identities hold in R:

$$(2.1) (w, x, xy) = (w, x, y)x,$$

$$(2.2) (w, x, yz) + (w, y, xz) = (w, x, z)y + (w, y, z)x,$$

$$(2.3) (w, x^2, y) = (w, x, (x, y)),$$

$$(2.4) \qquad ((w, x, y), x, y) = (w, x, y)(x, y),$$

$$(2.5) (wx, y, z) = w(x, y, z) + (w, y, z)x + (w, x, (y, z)).$$

LEMMA 2. x is in u(a, b) if and only if (x, a, b) = x(a, b).

LEMMA 3. If x is in u(a, b) and x is in u(a, ba), then x(a, a, b) = 0.

LEMMA 4. (x, a, b) and (x, a, b)a are in u(a, b).

LEMMA 5. If both y and xy are in u(a, b), then (x, a, b)y = 0.

Proofs of Lemmas 1-3 may be found in [3], and proofs of Lemmas 4 and 5 in [1].

As in [2], we define the mapping π (of R into R) by $x\pi = (x, a, b)$, for fixed a, b in R. Then (2.5) may be written

$$(2.6) (wx)\pi = w \cdot x\pi + w\pi \cdot x + (w, x, (a, b)).$$

3. The main theorem. We henceforth assume that R, a strongly right alternative ring of characteristic two, has property (P).

LEMMA 6.
$$(a, b) = 0$$
 implies $(a, a, b) = 0$.

PROOF. Assuming (a, b) = 0, we have that (xa, a, b) = x(a, a, b) + (x, a, b)a, using (2.5). Lemma 4 can be invoked to show that x(a, a, b) is in u(a, b). But (a, a, b) is also, so that, by Lemma 5, (x, a, b)(a, a, b) = 0. Setting x = a and using property (P) proves the lemma.

For convenience, we set c = (a, a, b), d = (a, b), and e = (d, a, d). This enables us to state

LEMMA 7. (i)
$$d\pi = (d, a, b) = 0$$
, (ii) $(d, a, x) = ((a, x), a, b)$, (iii) $cd = dc$, (iv) $(c, c, d) = (d, d, c) = 0$.

PROOF. (i), (ii), and (iii) are proved in [1, Lemmas 5 and 7] since Kleinfeld does not use the assumption on the characteristic until he reaches his equation (4). Then (iv) follows from Lemma 6.

LEMMA 8. For arbitrary u in u(a, b), (d, c, u) = eu.

PROOF. Observing that $u\pi = ud$, and $a\pi = c$, we compute $(d, a, u)\pi$ and obtain

$$(3.1) (d, a, u)\pi = (d, a, u)d + (d, c, u) + eu.$$

However, Lemma 7(ii) shows that (d, a, u) is in u(a, b) and thus the lemma follows from Lemma 2 and (3.1).

LEMMA 9. e = 0.

PROOF. The first three sentences in the proof of Lemma 7 in [1] show that ec = 0. Hence $(de \cdot c)e = 0$, using (1.1). We now apply Lemma 8 with u = e and get $e^2 = (d, e, c)$ so that $e^2 = de \cdot c$. Hence $e^2 = e^3 = 0$, so $e^4 = 0$. But property (P) implies $e^2 = 0$, and, again, e = 0.

LEMMA 10. (c, a, d) is in u(a, b).

PROOF. As in the proof of Lemma 8, we compute $(x, a, d)\pi$ and obtain

$$(3.2) \quad (x, a, d)\pi = (x, a, d)d + ((x, a, b), a, d) + (x, c, d) + (x, ad, d).$$

Substituting x = c in (3.2) gives $(c, a, d)\pi = (c, a, d)d + \theta$, where $\theta = (cd, a, d) + (c, d, ad) = ce + (c, a, d)d + (c, d, (a, d)) + (c, d, ad)$. However, $(c, d, ad) = (c, a, d^2) + (c, a, d)d = (c, d, (a, d)) + (c, a, d)d$, by (2.2) and (2.3). Hence $\theta = 0$ and the proof is complete.

We can now prove our main result.

THEOREM. Let R be a strongly right alternative ring of characteristic two. Then R is alternative if and only if it has property (P).

PROOF. The necessity is obvious. For the sufficiency, we begin by showing that c^2 is in u(a, b). Indeed, $(ca, a, b) = c^2 + cd \cdot a + (c, a, d)$. However, Lemma 7(ii) shows that (d, a, c) is in u(a, b). But $d \cdot ca$ is in so that $dc \cdot a = cd \cdot a$ is in, and (c, a, d) is in by Lemma 10. Hence c^2 is in u(a, b). However c is also in u(a, b), and thus, using Lemma 5, $cd \cdot c = c^2d = 0$. But cd is in u(a, b) and another application of Lemma 5 gives $(cd)^2 = 0$, from which cd = 0.

Now³ ((a, a, b), a, b) = cd = 0 and linearization yields ((a, a, x), a, b) = (c, a, x). Put x = ab and obtain that (ca, a, b) = 0. This implies that $c^2 = (c, a, ba)$ and therefore c^2 is in u(a, ba). Lemma 3 yields $c^3 = 0$, from which $c^4 = 0$, and, using property (P), $c^2 = 0$, c = 0.

² It is an easy matter to verify that a strongly right alternative ring of arbitrary characteristic is power-associative. Therefore, powers of a single element are well-defined and we may write e^3 , e^4 , etc. without ambiguity.

⁸ The last paragraph of our proof is the same as that in [1], but we repeat the few lines here for completeness.

BIBLIOGRAPHY

- 1. Erwin Kleinfeld, Right alternative rings, Proc. Amer. Math. Soc. vol. 4 (1953) pp. 939-944.
- 2. R. L. San Soucie, Right alternative division rings of characteristic two, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 291-296.
- 3. L. A. Skornyakov, Right alternative fields, Izvestia Akad. Nauk SSSR Ser. Mat. vol. 15 (1951) pp. 177-184.

THE UNIVERSITY OF OREGON

ON AN ITERATIVE PROCEDURE FOR OBTAINING THE PERRON ROOT OF A POSITIVE MATRIX

RICHARD BELLMAN

1. **Introduction.** The purpose of this paper is to present a new iterative procedure for obtaining the characteristic root of largest absolute value of a positive matrix.

The origin of the method is as follows. There is a result of von Neumann [7], a generalization of his fundamental min-max theorem in the theory of games [8], to the effect that

(1)
$$\min_{y} \max_{x} \frac{(x, Ay)}{(x, By)} = \max_{x} \min_{y} \frac{(x, Ay)}{(x, By)}$$

where the variation is over the region defined by

and it is assumed that B has the property that

$$(x, By) \ge b > 0$$

for all $(x, y) \in R$.

It was observed by Shapley [6] that this result can be obtained as a by-product of the theory of "games of survival," cf. [1;5;6], which requires only the fundamental min-max theorem, by considering the equation for λ ,