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k ranges over the positive integers, are distinct, so b has infinitely

many distinct conjugates.

Thus (c) holds in G; it is well known that G satisfies (b).
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MAXIMAL SUB ALGEBRAS OF GROUP-ALGEBRAS

JOHN WERMER

A closed subalgebra of a Banach algebra is called maximal if it is

not contained in any larger proper closed subalgebra. Let G be a dis-

crete abelian topological group and L its group-algebra, i.e. L is the

Banach algebra of functions/on G with E*e<J |/(X)| < °° and mul-

tiplication defined as convolution. What are the maximal subalgebras

of L? The complete answer is not known even when G is the group

of integers.

Here we assume that G is ordered. Let G+ be the semi-group of non-

negative elements of G and L+ the subset of L consisting of functions

which vanish outside of C7+. Then L+ is a proper closed subalgebra of

L.

Theorem l.1 L+is a maximal subalgebra of L if and only if the order-

ing of G is archimedean.

Proof. Suppose the ordering is non-archimedean. Then we can find

a, b in G+ with na<b for n = 1, 2, ■ ■ ■ . Consider the set Gi of all ele-

ments of G of the form g++n(— a), where n = 0, 1, 2, • • ■ and g+ is

in G+. Clearly Gi is a semi-group containing G+ and also —a is in

Cri and — b is not in Gi. Let Li be the closed subalgebra of L con-

sisting of all functions vanishing outside Gi. Then Li lies properly

between L+ and L, whence L+ is not maximal.

Suppose now that the ordering of G is archimedean. Let 31' be a

proper closed subalgebra of L with L+ included in 31'. We shall show

%' = L+.
Let Ex be the function in L with E\(g) =0, g9±\, E\(\) =1. Then
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1 A proof of this theorem has also been found by I. M. Singer. See the note below.
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for some Xo>0, E_x0 is not in 21'. For 21' contains L+ and so Ex is in

21', for X>0. If also all £x with X<0 were to belong to 21', then 21'
should equal L. Thus for someX0>0, Ey.0 is in 21' and its inverse

£_x0 is not. By a basic result of Gelfand there hence exists a (linear)

multiplicative functional x on 21' with x(E\0) =0.

Consider any Xi>0. Then since the ordering is archimedean, there

is a positive integer k with — X0+&Ai>0. Hence E-Xj+W! is in 21'.

We therefore get

(x(Exi))" = x(Ekxi) = X(Exi)x(E^0+kxi) = 0

and so x(E\i) =0 for all Xi>0.
L admits the involution

/->/*   where   f*(\) =/FT).

Let 21" be the closed subalgebra of 21' generated by the self-adjoint

elements in 21'. Then 21" is a self-adjoint subalgebra of 21' and con-

tains the unit element. The functional x restricted to 21" defines a

multiplicative functional on 21". Now a theorem due to Silov [l]

asserts that a multiplicative functional defined on a closed self-

adjoint subalgebra of a Banach algebra may be extended to a multi-

plicative functional defined on the whole Banach algebra. We apply

this theorem to extend x from 21" to a multiplicative functional xo

defined on all of L.

We claim that if an element/ of 21' has the form/= Ex<o a\E\,

then xo(/) = 0. For /* = Ex<o 5x£-x is in L+ and so is in 21'. Hence/ and

/* are in 21', whence / and /* are in 21". Then

Xo(/*) = x(/*) = E d,x(E-d = 0.
X<0

But

Xo(/) = ~xW),

whence Xo(/) =0.

Take now any <j> in 21'. Then <p= Exg° 4>\F\, E|<£x| < co- Since

each Ex with X>0 is in 21', Ex<o <£x£x is in 21'. Fix X0>0. Then

(E fo-Ex I Ex0 =   E 0x-Ex+xo +   E <£x£x+x0.
X<0 / X<-X0 XS-Xo

The left-hand term and the second term on the right are in 21'.

Hence Ex<-x0 </>x£x+x„ is in 21'. By the preceding, then,

0 = Xo(   E <2>x£x+x„) = Xo(   E (K-ExJxoCExo).
\ x<-x0 / \ x<-x0        /
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Hence xo(Ex<-xo0xEx)=O, since |xo(-Ex„)| =1. Choose Xi, 0^Xi<X0.

We then have Xo( Ex<-Xi <t>\E\)=0. Hence %o( E-Xo=x<-X! <j>\Ex)=Q

and so | xo(0-xo£-xo) | = | Xo( E-x0<x<-X! <£x£x) | ^ E-Xo<x<-x, 4>x£x|l.

Since E|0x|<°°, we can choose Xi so that E-x0<x<-Xi #vEx||

= E-x0<x<-Xi |<£x| <e, for any given positive e. Then \<b-\g\ =

| Xo(</>-x0E_x0) | <«• Hence <£_x0 = 0. Since this holds for all X0>0, we

conclude that <b is in L+. Hence 2l' = L+, as asserted.

Note. I had first proved Theorem 1 for the group G of integers

(Bull. Amer. Math. Soc. Abstract 60-2-281), but did not publish the

proof. After hearing from R. Arens and I. M. Singer about their

work on archimedean ordered groups [2 ] I tried to extend my result

to that situation and proved Theorem 1 given in this paper.
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