k ranges over the positive integers, are distinct, so b has infinitely many distinct conjugates.

Thus (c) holds in G; it is well known that G satisfies (b).

BIBLIOGRAPHY

- 1. R. H. Bruck, Difference sets in a finite group, Trans. Amer. Math. Soc. vol. 78 (1955) pp. 464-481.
 - 2. M. Hall, Cyclic projective planes, Duke Math. J. vol. 14 (1947) pp. 1079-1090.

THE UNIVERSITY OF WISCONSIN

MAXIMAL SUBALGEBRAS OF GROUP-ALGEBRAS

JOHN WERMER

A closed subalgebra of a Banach algebra is called *maximal* if it is not contained in any larger proper closed subalgebra. Let G be a discrete abelian topological group and L its group-algebra, i.e. L is the Banach algebra of functions f on G with $\sum_{\lambda \in G} |f(\lambda)| < \infty$ and multiplication defined as convolution. What are the maximal subalgebras of L? The complete answer is not known even when G is the group of integers.

Here we assume that G is ordered. Let G^+ be the semi-group of non-negative elements of G and L^+ the subset of L consisting of functions which vanish outside of G^+ . Then L^+ is a proper closed subalgebra of L.

THEOREM 1. $^1L^+$ is a maximal subalgebra of L if and only if the ordering of G is archimedean.

PROOF. Suppose the ordering is non-archimedean. Then we can find a, b in G^+ with na < b for $n = 1, 2, \cdots$. Consider the set G_1 of all elements of G of the form $g^+ + n(-a)$, where $n = 0, 1, 2, \cdots$ and g^+ is in G^+ . Clearly G_1 is a semi-group containing G^+ and also -a is in G_1 and -b is not in G_1 . Let G_1 be the closed subalgebra of G_1 consisting of all functions vanishing outside G_1 . Then G_1 lies properly between G_1 and G_2 whence G_1 is not maximal.

Suppose now that the ordering of G is archimedean. Let \mathfrak{A}' be a proper closed subalgebra of L with L^+ included in \mathfrak{A}' . We shall show $\mathfrak{A}' = L^+$.

Let E_{λ} be the function in L with $E_{\lambda}(g) = 0$, $g \neq \lambda$, $E_{\lambda}(\lambda) = 1$. Then

Received by the editors December 27, 1954.

¹ A proof of this theorem has also been found by I. M. Singer. See the note below.

for some $\lambda_0 > 0$, $E_{-\lambda_0}$ is not in \mathfrak{A}' . For \mathfrak{A}' contains L^+ and so E_{λ} is in \mathfrak{A}' , for $\lambda > 0$. If also all E_{λ} with $\lambda < 0$ were to belong to \mathfrak{A}' , then \mathfrak{A}' should equal L. Thus for some $\lambda_0 > 0$, E_{λ_0} is in \mathfrak{A}' and its inverse $E_{-\lambda_0}$ is not. By a basic result of Gelfand there hence exists a (linear) multiplicative functional χ on \mathfrak{A}' with $\chi(E_{\lambda_0}) = 0$.

Consider any $\lambda_1 > 0$. Then since the ordering is archimedean, there is a positive integer k with $-\lambda_0 + k\lambda_1 > 0$. Hence $E_{-\lambda_0 + k\lambda_1}$ is in \mathfrak{A}' . We therefore get

$$(\chi(E_{\lambda_1}))^k = \chi(E_{k\lambda_1}) = \chi(E_{\lambda_0})\chi(E_{-\lambda_0+k\lambda_1}) = 0$$

and so $\chi(E_{\lambda_1}) = 0$ for all $\lambda_1 > 0$.

L admits the involution

$$f \rightarrow f^*$$
 where $f^*(\lambda) = \overline{f(-\lambda)}$.

Let \mathfrak{A}'' be the closed subalgebra of \mathfrak{A}' generated by the self-adjoint elements in \mathfrak{A}' . Then \mathfrak{A}'' is a self-adjoint subalgebra of \mathfrak{A}' and contains the unit element. The functional χ restricted to \mathfrak{A}'' defines a multiplicative functional on \mathfrak{A}'' . Now a theorem due to Silov [1] asserts that a multiplicative functional defined on a closed self-adjoint subalgebra of a Banach algebra may be extended to a multiplicative functional defined on the whole Banach algebra. We apply this theorem to extend χ from \mathfrak{A}'' to a multiplicative functional χ_0 defined on all of L.

We claim that if an element f of \mathfrak{A}' has the form $f = \sum_{\lambda < 0} a_{\lambda} E_{\lambda}$, then $\chi_0(f) = 0$. For $f^* = \sum_{\lambda < 0} \bar{a}_{\lambda} E_{-\lambda}$ is in L^+ and so is in \mathfrak{A}' . Hence f and f^* are in \mathfrak{A}' , whence f and f^* are in \mathfrak{A}'' . Then

$$\chi_0(f^*) = \chi(f^*) = \sum_{\lambda < 0} \bar{a}_{\lambda} \chi(E_{-\lambda}) = 0.$$

But

$$\chi_0(f) = \overline{\chi_0(f^*)},$$

whence $\chi_0(f) = 0$.

Take now any ϕ in \mathfrak{A}' . Then $\phi = \sum_{\lambda \in G} \phi_{\lambda} E_{\lambda}$, $\sum |\phi_{\lambda}| < \infty$. Since each E_{λ} with $\lambda > 0$ is in \mathfrak{A}' , $\sum_{\lambda < 0} \phi_{\lambda} E_{\lambda}$ is in \mathfrak{A}' . Fix $\lambda_0 > 0$. Then

$$\left(\sum_{\lambda<0}\phi_{\lambda}E_{\lambda}\right)E_{\lambda_{0}}=\sum_{\lambda<-\lambda_{0}}\phi_{\lambda}E_{\lambda+\lambda_{0}}+\sum_{\lambda\geq-\lambda_{0}}\phi_{\lambda}E_{\lambda+\lambda_{0}}.$$

The left-hand term and the second term on the right are in \mathfrak{A}' . Hence $\sum_{\lambda<-\lambda_0} \phi_{\lambda} E_{\lambda+\lambda_0}$ is in \mathfrak{A}' . By the preceding, then,

$$0 = \chi_0 \left(\sum_{\lambda < -\lambda_0} \phi_{\lambda} E_{\lambda + \lambda_0} \right) = \chi_0 \left(\sum_{\lambda < -\lambda_0} \phi_{\lambda} E_{\lambda} \right) \cdot \chi_0(E_{\lambda_0}).$$

Hence $\chi_0(\sum_{\lambda<-\lambda_0}\phi_{\lambda}E_{\lambda})=0$, since $\left|\chi_0(E_{\lambda_0})\right|=1$. Choose $\lambda_1, 0\leq \lambda_1<\lambda_0$. We then have $\chi_0(\sum_{\lambda<-\lambda_1}\phi_{\lambda}E_{\lambda})=0$. Hence $\chi_0(\sum_{-\lambda_0\leq \lambda<-\lambda_1}\phi_{\lambda}E_{\lambda})=0$ and so $\left|\chi_0(\phi_{-\lambda_0}E_{-\lambda_0})\right|=\left|\chi_0(\sum_{-\lambda_0<\lambda<-\lambda_1}\phi_{\lambda}E_{\lambda})\right|\leq \left\|\sum_{-\lambda_0<\lambda<-\lambda_1}\phi_{\lambda}E_{\lambda}\right\|$. Since $\sum\left|\phi_{\lambda}\right|<\infty$, we can choose λ_1 so that $\left\|\sum_{-\lambda_0<\lambda<-\lambda_1}\phi_{\lambda}E_{\lambda}\right\|$. $=\sum_{-\lambda_0<\lambda<-\lambda_1}\left|\phi_{\lambda}\right|<\epsilon$, for any given positive ϵ . Then $\left|\phi_{-\lambda_0}\right|=\left|\chi_0(\phi_{-\lambda_0}E_{-\lambda_0})\right|<\epsilon$. Hence $\phi_{-\lambda_0}=0$. Since this holds for all $\lambda_0>0$, we conclude that ϕ is in L^+ . Hence $\mathfrak{A}'=L^+$, as asserted.

Note. I had first proved Theorem 1 for the group G of integers (Bull. Amer. Math. Soc. Abstract 60-2-281), but did not publish the proof. After hearing from R. Arens and I. M. Singer about their work on archimedean ordered groups [2] I tried to extend my result to that situation and proved Theorem 1 given in this paper.

REFERENCES

- 1. G. W. Mackey, *Commutative Banach algebras*, Lecture notes (multigraphed), Harvard University, 1952, ed. by A. Blair, p. 95.
 - 2. R. Arens and I. M. Singer, to appear.

Brown University