THE NUMBER OF LATTICE POINTS IN AN n-DIMENSIONAL TETRAHEDRON¹

S. CHOWLA AND W. E. MIENTKA

Let the a_i $(1 \le i \le n)$ be positive integers, no two of which have a common factor; let A denote the product of the a_i .

In this paper we prove the following two exceedingly simple theorems,² which we have not, to our surprise, seen before.

THEOREM 1. If $\eta \equiv 0 \pmod{A}$, the number of solutions of

(1)
$$\sum_{i=1}^{n} a_i x_i \leq \eta, \qquad x_i \geq 0 \qquad (1 \leq i \leq n)$$

is a polynomial with rational coefficients in the quantities η/A and the a_i .

THEOREM 2. If $\eta \equiv 0 \pmod{A}$, the number of solutions of

(2)
$$\sum_{i=1}^{n} a_i x_i = \eta, \quad each \ x_i \ge 0,$$

is a polynomial with rational coefficients in the quantities η/A and the a_i .

One should mention here that both theorems are completely trivial for n=1. Theorem 2 is also trivial for n=2, and indeed for the following reason. Clearly if $n\equiv 0 \pmod{a_1a_2}$,

$$a_1x_1 + a_2x_2 = \eta$$

implies that $x_1 \equiv 0 \pmod{a_2}$, $x_2 \equiv 0 \pmod{a_1}$. Let $x_1 = a_2 x_1'$, $x_2 = a_1 x_2'$. Hence we see that if $\eta \equiv 0 \pmod{a_1 a_2}$ the number of solutions of

(3)
$$a_1x_1 + a_2x_2 = \eta, \qquad x_1 \ge 0, x_2 \ge 0$$

is the same as the number of solutions of

(4)
$$x_1 + x_2' = \frac{\eta}{a_1 a_2}, \qquad x_1' \ge 0, x_2' \ge 0$$

which is clearly $(\eta/a_1a_2)+1$.

However, Theorem 2, while not deep, does not seem to be trivial for n=3.

Received by the editors March 2, 1955.

¹ This research was supported by the United States Air Force through the Office of Scientific Research of the Air Research and Development Command.

² For the case when the a_i 's are all equal to 1, the result is well known.

EXAMPLE. For n=3 (in Theorem 2) and $\eta \equiv 0 \pmod{a_1 a_2 a_3}$, the number of solutions of $\sum_{i=1}^3 a_i x_i = \eta$ is

$$\frac{\eta^2}{2a_1a_2a_3} + \frac{\eta(a_1 + a_2 + a_3)}{2a_1a_2a_3} + 1.$$

Theorems 1 and 2 are proved as follows. Following D. H. Lehmer [1] and D. C. Spencer [2] we write $L(\eta)$ for the number of solutions of (1), when η is any non-negative real number; we use $r(\eta)$ to denote the number of solutions of (2). Observe that $r(\eta) = 0$ if η is not an integer. We also write

(5)
$$L^*(\eta) = L(\eta) - r(\eta)/2.$$

We have (see [2])

(6)
$$L^*(\eta) = \frac{1}{2\pi i} \int \frac{e^{\eta S} dS}{S \prod_{i=1}^{n} (1 - e^{-a_i S})}$$

where the integral is along the vertical line $\sigma = c$ $(c > 0; S = \sigma + it, \sigma)$ and t real). Now $L^*(\eta)$ is a polynomial in η of degree n, where the coefficients B_i $(1 \le i \le n)$ of η^i , multiplied by A, are polynomials in a_i . The constant term B_0 , which is a function of the a_i and η , is periodic in η , with a period equal to A. (See G. H. Hardy [3] for the special case n = 2.)

From the periodic nature of B_0 it is trivial that when $\eta \equiv 0 \pmod{A}$, $B_0 = B_0(\eta; a_1, \dots, a_n) = B_0(0; a_1, \dots, a_n)$. The B_i are found as follows:

Our function f(S) has:

- (i) A pole of order n+1 at S=0. The residue $P(\eta)$ here is a polynomial in η with coefficients which, when multiplied by A, are polynomials (with rational coefficients) in the a_i . This remark is true for all non-negative real η .
- (ii) A pole of order n at $S = 2m\pi i$ (m an integer $\neq 0$). Here again, the residue $Q(\eta)$ is a polynomial in η with coefficients which, when multiplied by A, are polynomials (with rational coefficients) of the a_i provided η is an integer.
- (iii) Simple poles at $S = 2g_i\pi i/a_i$ where $g_i \neq 0 \pmod{a_i}$. The residue here is denoted by $T_i(\eta)$, and has a period a_i . (The argument in Hardy [3] generalizes at once to prove this statement.) $T_i(\eta)$ is an infinite trigonometrical series. (Incidentally, in another note we show how to reduce these to finite trigonometrical sums.) Thus³

^{*} In fact for all $\eta \geq 0$, $T_i(\eta) = \sum_{g_i \not\equiv 0 \pmod{g_i}} \exp(\eta(2g_i\pi i/a_i))/2g_i\pi i \cdot H_i$, where $H_i = \prod_{u \neq i} (1 - \exp((-2g_i\pi ia_u/a_i))$.

(7)
$$L^*(\eta) = P(\eta) + Q(\eta) + \sum_{i=1}^n T_i(\eta) [\eta \text{ an integer } \ge 0].$$

Finally we evaluate $r(\eta)$ when $\eta \equiv 0 \pmod{A}$ as follows. The latter condition on η holds throughout the rest of the paper, and we shall not repeat it. Similar to our proof of (7) we easily establish that

(8)
$$L^*(\eta + 1/2) = P(\eta + 1/2) + R(\eta + 1/2) + \sum_{i=1}^n T_i(\eta + 1/2).$$

The R function here is not the same as the Q introduced before. However, it remains, like Q, a polynomial in η with coefficients which, when multiplied by A, are polynomials (with rational coefficients) in the a_i . Observe that

(9)
$$\sum_{i=1}^{n} T_{i} \left(\eta + \frac{1}{2} \right) = \sum_{i=1}^{n} T_{i} \left(\frac{1}{2} \right)$$
$$= L^{*} \left(\frac{1}{2} \right) - P \left(\frac{1}{2} \right) - R \left(\frac{1}{2} \right)$$
$$= 1 - P \left(\frac{1}{2} \right) - R \left(\frac{1}{2} \right)$$

and

(10)
$$r(\eta) = 2\{L^*(\eta + 1/2) - L^*(\eta)\}.$$

From the above equations we see that Theorems 1 and 2 follow. In fact $r(\eta)$ is a polynomial in η of degree n-1 with coefficients which, when multiplied by A, are polynomials (with rational coefficients) in the a_i . An identical remark is true about $L(\eta)$, except that we have, in this case, a polynomial of degree n in η .

REFERENCES

- 1. D. H. Lehmer, The lattice points of an n-dimensional tetrahedron, Duke Math. J. vol. 7 (1940) pp. 341-353.
- 2. D. C. Spencer, The lattice points of tetrahedra, Journal of Mathematics and Physics vol. 21 (1942) pp. 189-197.
 - 3. G. H. Hardy, Ramanujan, Cambridge University Press, 1940.

University of Colorado and University of Massachusetts