
ON THE COEFFICIENTS IN ASYMPTOTIC FACTORIAL
EXPANSIONS1

t. d. riney

1. Introduction. We shall consider the function

(i.i) pgg(w) = f[ rr> + *t) /Ù rr> + Pi).

Here p and q are non-negative integers with pûq\ the a i and p¡ denote

arbitrary complex parameters and w denotes a complex variable. It

is known from a lemma which appears in the work of W. B. Ford [l ],

E. M. Wright [5], and H. K. Hughes [2] that Pgq(w) admits an

asymptotic factorial expansion in every right half-plane. Moreover,

it follows from their investigations that the coefficients occurring in

this expansion of Pgq(w) are precisely the constants which occur in

the asymptotic development for large \z\ of the important class of

entire functions

00

pG,(z) = 2 pg*(n)zn.
n=0

However, the literature reveals no satisfactory method of determin-

ing these constants.

Van Engen [4] has utilized the fact that Pgq(w) satisfies a first

order difference equation in order to obtain a method of computing

the coefficients. However, his procedure is greatly complicated by the

introduction of intermediate constants which we shall avoid. By so

doing, we obtain an explicit recursion formula for the coefficients in

question.

2. Expansion of Pgq(w). The expansion theorem due to the authors

cited in §1 is now stated without the proof which is based on Stirling's

formula.

Theorem 2.1. Let h be any real number and let M be any non-nega-

tive integer. Then in the half-plane Re (w) > —h with \ w\ large, pgq(w)

admits the asymptotic development
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[M c

T.-,— " ,   ,
m=o T(ctw + ß + m)

(2.1)

\T(aw + ß +M+!))]'

where c0 = 1 and

(2.2)     a = q+í-p;        ß = È Pi ~ É *i + 1/2(1 - a).
;-0 <=1

3. Two lemmas. We shall need the following two results:

Lemma 3.1. Let a be a positive real number and let a and b denote

arbitrary complex parameters. Then the function (w-\-a)~l/Y(aw-\-b)

has the convergent factorial expansion

1 a "      T(b - aa + n)

(w + a)T(aw + b)      T(b - aa) n_0 T(aw + b + n + 1)

in the right half-plane defined by Re (w+a) >0.

Proof. A proof of this well-known result is given in [l ].

It will be convenient to introduce the notation

(3.1) R(w) = fl(w + ai) /tl(w + Pi) (P^q).
i-l '      j-0

Then if R(w) has only first order poles its partial fraction expansion

is given by

(3.2) JîW = Ê% + Pi)-1,
í-o

where

(3.3) D^JKo-i-p,) /   E    (Pk-Pi).
i=l '      k-O.k^j

Lemma 3.2. Assume that the rational function R(w) has only first

order poles and let x be any complex quantity. Then

«   DjT(x - aPi + n)
(3.4)     2-,

3=o        T(x — apj)

where a and ß are defined by (2.2).

0; n = 0, 1, • • • , a — 2,

a"-1; « = a — 1,

aa(x — ß) ;   « = a,
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Proof. If we compare the coefficients in the Laurent expansion of

R(w) obtained from (3.2) with those obtained from (3.1) we have the

identities

(3.5)     Z (-p,)"Z), =
J-0

fO; n = 0, 1, • • • ,a - 2,

1; n = a — 1,

[1/2(1 - a) - ß;   n = a.

Let the quantities bk,n be defined by the identity

T(x-aP+k)        *
—-r— = £ Kn(-P)n,

T(x — ap) „_o

then

(3.6) bk,k = a*;       6*.*_i = «^[¿x + 1/2Ä(* - i)],

and

«   Z),r(x - ap,- + k)        « *
(3.7) £ -4--^—-L =T,D,Z bU-Pi):

,-0 1 (X — apj) i_0 n-0

By interchanging the order of summation in (3.7) and using (3.5) and

(3.6), the assertion easily follows.

4. The recursion formula. The reader will readily note that by

applying the recurrence relation T(x+1) =xr(x) to (1.1) we immedi-

ately obtain the difference equation

(4.1) Pgq(w + 1) = R(w)pgq(w).

This is the difference equation referred to in §1. We now use (4.1)

to prove the following

Theorem 4.1. Let cm (m = 0, 1, 2, • • • ) be the constants in the fac-

torial expansion of Pgq(w) as defined by (2.1). Provided Pj^pkfor j^k

we have the recursion formula

_J   m-l

(4.2) cm =-£ cne(m, n),
ma" „=.o

where

fA.. '    DjT(ß - apj 4-a + m)
(4.3) e(m, n) = £ -—-—-

i-o        T(ß - apj + n)

Here c0 = l, a and ß are defined in (2.2), and D¡ is defined by (3.3).

Proof. We apply Theorem 2.1 to the two sides of (4.1) and obtain
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two different expansions for Pgg(w-\-í):

Pgq(w+1)

(4.4) r " cm ( i \-i
= Ca™+"\   E -+01-)   ,

L„,_o T(aw+ß+a+m)        \r(at»+/J+«+Jf+l)/J

pgt(w + 1)

<4-5>     .c,-«f£^—+o(-!_Yl,
Lnti, T(aw+ß+m)        \T(aw+ß+M+\)/J

where R(w) is defined in (3.1) and C=((27r)1/2)l-aa;0_1/2. We may re-

write (4.5) in the form:

ta m c

2 Di Z (    -L    mv"_l*_i.    ^,-_o       m-o (w +pj)T(aw + ß+ m)

+ o(-!-Y|.
\T(aw + ß + a + M + l)/_

Let p = miny Re (p;) and by H denote the half-plane consisting of

points w such that Re (w+p)>0. It then follows from Lemma 3.1

that

zZcm¿Z   -
m-o       n-o T(aw + ß + m + n+l)

^DT(ß + m-aPi + n) / 1 y.

ÊS roa + w-apí) Vr(aw + ^ + a + Af + 1)/J'

provided w is in iî. The summation over n may be restricted to

w_a — 1 according to Lemma 3.2. We set k=n— a + 1 and obtain

r *í,        " e(i» + k - 1, w)
rf.iw+D  =Ca-+1     V CmE

L m-0 *-0

" T(aw + ß + a + M + 1)/

Here the summation over ¿ may be restricted to k^M — m because

the remainder can be absorbed in the order term. By introducing

n = m+k and interchanging the order of summation we obtain

rM i
pgq(w + 1) = Ca™+>\   E

_o T(aw + ß + a+k + m)

°(-!-Yl-
\T(aw + ß + a + M + 1)/ J

L n-o T(aw + ß + a + n)
(4.6)

X Ë cme(n - 1, m) + 0 (-YL
m=o \T(aw + ß + a + M + 1)/J
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provided w is in H. We interchange m and n in (4.6) and then com-

pare coefficients with those of (4.4). We have

m

(4.7) a"-lcm = £ cne(m - 1, »).
n=0

Using (3.4) we can write the last two terms of (4.7) separately and

after cancelling the terms in cm and replacing m — 1 by m the result

(4.2) follows.

5. Generalization. The assumption that PjT^Pk for J5¿k involves no

real loss of generality. J. H. B. Kemperman [3] has shown that cm

is a polynomial in the parameters p¡. It can be verified that e(m, n)

is also a polynomial in the p¡. Hence, if we let e*(m, n) and c„ denote

the limiting values as two or more p values tend to equality, we can

write

_1   m—1

Cm =- 2-, cne (m, n).
ma „_o

The calculation of e*(m, n) by the limiting procedure is difficult.

The recurrence relation for the case that two or more values of p

are equal may also be obtained by using the factorial representations

of nonlinear terms of the partial fraction expansion of R(w). In fact,

this direct approach is much easier.
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