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1. Introduction. This paper introduces a new number associated

with a wide class of Latin squares. By the methods of combinatorial

topology, suggested in [l], it is shown in Theorem II that the parity

of this number is determined by the order of the square.

Let a diagonalized Latin square be a Latin square in which the

main diagonal (the diagonal extending from the upper left corner to

the lower right corner) is the n elements in their natural order. Con-

sider the set of n2 triples (i, j, a) associated with such a square A

where i is the row index, j the column index, and a the entry in the

(i, j)th position in the square.

Lemma. A triplet is determined by any two of its coordinates.

To prove this lemma, define the orthogonal projection Wi as the

operator which maps each 3-tuple on a 2-tuple by eliminating the

ith coordinate. Then if / is any triplet, t¿, i = 1, 2, 3, is an ordered

pair of integers. Since A is a Latin square, the set {tt,<}, as / ranges

over all the triplets, is the complete set of all possible ra2 ordered

number pairs of n distinct integers. If t and t' are distinct triplets,

irit^iTit' since there are only n2 pairs in the set {nd} and they must

all be distinct.

Because of the diagonal property of A, each of the triplets (k, k, k),

¿ = 1,2, • • • , ra, must appear. If these are deleted first from the set of

triplets, the set of images iíJ will be the possible n(n — 1) ordered

pairs of distinct numbers.

The mapping ir,- is 1-1 so the mapping irr1 is single-valued.

Theorem I. There is a natural correspondence between diagonalized

Latin squares and sets of n(n — i) triplets t satisfying:

(i) the projection 7r,-, * = 1, 2, 3 is one to one;

(ii) there are no fixed triplets under the mapping 7rrI2n7r< = P,- where

T is transposition.

To complete the proof of the theorem it is only necessary to note

that to a set of n(n — 1) triplets, with the properties (i) and (ii), the

adjunction of triplets (k, k, k), k = 1, • • • , n, yields a set of ra2 triplets

from which a diagonalized Latin square may be constructed.
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Since the mappings P¿ of Theorem I are self-inverse, they induce

a symmetric relation R between triplets. The subset of triplets, all

of which contain a fixed integer m, may be divided into equivalence

classes (depending on the integer m) in which two triplets 5 and t are

equivalent if there exists a chain of triplets k, • • • , h such that

s=h, tiRt2, ■ • • , tk-iRtk, h — t. Each such equivalence class will be

called a cycle. Define the length of a cycle to be the number of dis-

tinct triplets contained in it.

It may be observed that the length of a cycle is divisible by 3. To

prove this, a cycle may be divided into 3 sets Mi, * = 1, 2, 3, where m

appears as the ith coordinate in each triple of Mi. From the definition

of Pi it is true that PiM,- = Mk, i, j, k all different. Since Pi is one to

one, each set Mt contains the same number of elements. The observa-

tion follows since the sets Mi do not intersect.

It is also of interest to note that two cycles on different integers

may intersect without being identical but two cycles on the same

integer can intersect only if they are identical. However there may

be several distinct cycles on one integer. Let i>(m) be the number of

cycles on the integer wiand let Z = ¿~^m^{m). Clearly «gZ^«(« — 1).

§2 contains a proof of:

Theorem II. Z=n{n-\)/2 (mod 2).

2. Proof of theorem. We first define a two-dimensional abstract

algebraic complex K [2, p. 89]. The two-dimensional elements are the

(«)(« —1) triplets, t, of §1. The one-dimensional elements are the

(3/2)(«)(« — 1) ordered pairs {t, Pit), where, irit = {m, m') with the re-

striction m<m'. The zero-dimensional elements are the « integers

m, 1 ̂ m^n.

We now define the incidence numbers. These are

[f.{t,Pit)] = 1,       [Pit:{t, Pit)] = - 1,

[(/, Pit):m'] = 1,        [{t, Pit):m] = - 1 if r4 = {m, m').

All other incidence numbers are zero.

The diagram on the next page, indicating a partition of the torus

into six triangles, is a geometric realization of the complex defined

from the six triples (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2),
(3, 2, 1). (Compare to the example in [l, p. 222]).

Since the two-dimensional elements are not determined by their

vertices, K is certainly not a simplicial complex. However the derived

complex K' [2, p. 164] is simplicial.

Let us assume that K' is in fact represented as a polyhedron. We
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note that K' is connected, that each edge is incident to precisely two

triangles, and that K' is orientable. Each vertex of K', not corre-

sponding to the n zero-dimensional elements of K, clearly has a disk

neighborhood.

For K' to be a manifold, each of the vertices of K' corresponding

to the ra zero-dimensional elements of K must also have a disk neigh-

borhood. Call these vertices in K' again m, i=m = n.

This is equivalent to the assertion in K' that the edges and vertices

of the closure of the star of m (each m, l=mfZn), and not incident to

m, form the triangulation of a simple closed curve.

This assertion translates in K into the condition that i>(m) = l.

In general however 4>(m) ~ 1, so K' is not necessarily a manifold.

We obtain a manifold, K", in the following manner, which we de-

scribe, for simplicity, in geometric terms. Remove from K' the n

vertices corresponding to vertices of K. Replace the vertex corre-

sponding to the number m by $(m) distinct symbols, replacing m in

each of the <ï>(m) disks containing m, by one of these symbols. Then

incorporate these symbols into a simplicial scheme by replacing the

symbol m in the incidence relations by the appropriate one of the

$(m) symbols, depending on the disk in question. This process essen-

tially consists of separating the i>(w) disks at their common point m.

Let X stand for "Euler characteristic of." Since K" is an orientable

two-dimensional manifold, X(K")=0 (mod 2). But

X(K") = Z -n+ X(K') =Z - n + X(K)

3
= Z — n + n-n(n — 1) + (n)(n — 1).
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Thus Z = («)(« —1)/2 (mod 2) and Theorem II is proved.

3. Remarks. We first make some definitions. An nXn square array

of elements m, l^m^n, is column-Latin il each column contains «

distinct elements [3, p. 335]. If, furthermore, the first row is the

integers m, i^m^n, in their natural order the array is standard

column-Latin.

If A and B are an orthogonal pair of standard column-Latin

squares, we form a collection of triples satisfying (i), (ii) of Theorem

I, by taking all {bi, b2, b3), 1 ̂ bt^n, i = \, 2, 3 where b2 and b3 are in

the same position in A and B and not in the first row and bi is their

column index. This construction implies that there is a many-one

correspondence between such pairs A, B and diagonalized Latin

squares. MacNeish applied this construction to orthogonal pairs of

standard Latin squares in [l] to prove that there is no orthogonal

pair of Latin squares of order « = 2 (mod 4). The error in this proof

is the statement "each of the « vertices must occur in the same

number of circuits," [2, p. 224]; for from this statement the conclu-

sion is then drawn that Z^O (mod «). Examples exist contradicting

this latter assertion. It is interesting to note that the proof in [l ] does

not exploit the full Latin character of A and B. The following is an

example of a 6X6 diagonalized Latin square:

16   5   2   3   4

3 2 4 6 15

6 4 3 5 2 1

2    5    14   6   3

4 16   3   5    2

5 3   2    14   6
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