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1. Introduction. A well known theorem of Cartan-Brauer-Hua

states that any division subring of a division ring D setwise invariant

under all inner automorphisms (or more briefly, invariant subring)

is either contained in the centre or is D itself. In three recent papers,

Hattori [3], Hua [5], and Kasch [7] extended this result to Dn, an

wXw matrix ring over a division ring D, i.e., a simple ring with

descending chain condition. Indeed, it was shown that if n^2, any

invariant additive subgroup of Dn not in the centre contains [Dn, D„],

the additive group generated by the commutators [a, b]=ab — ba,

unless n = 2 and D = GF(2). From this it follows, of course, that the

only invariant subrings are Dn or subrings of the centre. It is the

purpose of this note to show how some of the computations of the

above authors (especially those of Kasch) may be used to study in-

variant additive subgroups of an »X« matrix ring An (n ^2) over an

arbitrary associative ring A with unit. Such a ring contains a set of

matrix units e¿,- with the usual multiplication table, ^e,,- is the unit

of An, and A is the centralizer of the set of matrix units.

It is well known that the only two-sided ideals of An are of the form

In, I a two-sided ideal of A, and so at least the subgroups /„ are in-

variant. We shall see that the most general type of invariant sub-

group S, not in the centre, is not too far removed from /„; indeed,

the off-diagonal entries of the elements of S form a nonzero two-

sided ideal I and S contains [An, /„]. In particular, if A is simple the

only invariant subrings are in the centre or A„ itself. In case «^3

we use our result to rederive the theorems of Jacobson and Rickart

[ó] on the Lie and Jordan ideals of matrix rings; as well as showing,

that if A is simple, the only Lie ideals of [An, A„] are in the centre.

We also remark that if A has no unit the ideals, and consequently,

the invariant (under quasi-inner automorphisms) subgroups may be

more complicated: thus if Ai7áA,
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is a proper two-sided ideal in A2 not of the form 72. In the last part

of this note we apply some of our results to show that if a ring is

locally a matrix ring of degree > 2 over a simple ring with unit, the

only invariant subrings are subrings of the centre or the ring itself.

A preliminary study of invariant subrings of general matrix rings

has already been carried out in [2], and our results include those ob-

tained there.

2. Matrix rings. We shall first deal with the case «^3. It turns

out that in this case it is sufficient to assume only invariance under

conjugation by elements 1+Xey, i 9aj. Following Dieudonné [l] we

call these elements the transvections of An. Then we have

Theorem 1. Let A be a ring with unit and let Anbe the ring of nXn

matrices over it. If n^3, any additive subgroup S of An, not in the

centre,1 is setwise invariant under all inner automorphisms by the trans-

vections if and only if S= [An, In]-\-D. Here I is a nonzero two-sided

ideal of A and D is an additive group of diagonal matrices XX *«>

with S¿ = 5j mod I and 5¿+7 in the centre of A—I.

Proof. Let I be the set of all elements of A consisting of the off-

diagonal entries of elements of 5. We begin by showing 7V0. Suppose

sG-S is not in the centre but is a diagonal matrix, 5 = ^ah e**. Then

for i¡¿j (1+Xe,7)5(l—Xe,,)—5 = (Xay—a¿X)etJG'S' for every X in A.

Thus if diT^a,; X = l will give a nonzero element of /. On the other

hand if 5 is a scalar matrix with a, = a, a is not in the centre of A

and so for some X, [a, X] 5¿0 which again gives a nonzero element of I.

Next we show that if «£/, so is Xaju for any X, ß in A. There is

some 5 in 5 for which a is an off-diagonal entry, say 5 = y,o:,-,e¿,- with

a = ahk, k^h. Since n^3 there is an integer m^n such that m, k, h

are all distinct. Then for any two elements X, /¿G-4 we have just as

in [7, pp. 184-185]

t = (1 + \ehk)s(l — \ehk) — s = ehk\s — s\ehk — ehk\s\ehk G 5,

u = (1 + fiehm)t(l — /ißAm) — t = —ehmfts\ehk — ehk\sfiehm G S

and finally

(1 + emk)u{l — emk) — u = ehk\siiehk = (\an)ehk G 5.

Computing (l+e¿y)aeM(l—et;-)—aeM first for j^h, i = k and then

for j = h, i¥-k, we see that ae^, j = l, ■ ■ ■ , h — i, A+l, • • • , n;

ctCik, i = i, ■ • • , k — 1, k-\-l, ■ • ■ , n; are in S. Then, applying the

same operations to aekj and aeik as were applied to aeuk yields ae^^S

The set of scalar matrices with entries in the centre of A.
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for every pair i, j, i^j. Hence / is an additive group and this to-

gether with the previous paragraph shows that 7 is a two-sided ideal

in A such that IenQS,ii¿j. Finally for each X in A and 1 in I we have,

cf. [7, p. 185]

(1 + Xe;j)ie,-,(1 — Xei,-) — te,-,- -f- XiXe¿,- = Xte¿¿ — iXe,-, G 5.

We thus see that S contains the additive subgroup T generated by

lea and Xt««—tXe#. Furthermore, since iei} = [tea, e„] and [Xe.y, ie,<]

= Xie,¿ — ¿Ke¡j, T(Z[An, I„]. But calculating [XetJ-, icm] for any XG-4,

i£/ and any integers i, j, h, k shows that in any of the three cases

j = h,i^k;j^h, i = k;j = h,i = k; [Xe.y, te^GT, so that T= [An, /„].
(This last equality was also noted in [8].)

From the definition of / and since IenC.[An, In] it is then clear

that if s£.S, s = t+d, with tÇ£[An, In] and á=2S»e¿»> a diagonal

matrix. Applying the same transformations to d as were applied in

the beginning of the proof to show lj¿0, immediately shows that for

every X in A, X5j — SjX£/. Thus 5¡ = 5,- mod I and S.+7 is in the centre

of A-I.
These last calculations also serve to show that conversely, any addi-

tive subgroup [An, In]+D, with D as in Theorem 1, is setwise in-

variant under conjugation by the transvections.

We now turn to the case n = 2: It is known from [3], [5], and [7]

that some restrictions must be imposed on A if the same results as

for «>2 are to hold. Thus, for example, if A =B@C with B = GF(2)

and if S is any invariant subring of &,

5eiCo)' CD- Co)' O}'etheunitof*'

would also be invariant. To avoid this situation we assume that A

admits the operator 1/2, i.e. for each X in A, there is a (i in A with

2/i=X. Then if we retain the same notation as for «^3we still have

19*0 but we are not able to show without further hypotheses that I

is a two-sided ideal. Indeed, if a(E.I, there is an sÇE.S, with a = a2i say.

Then
(1 + \e12)s(l - Xe12) - s = t G S,

(1 + peu)t(l — peu) — t — — (Xaju + paXjeu G S.

If we now assume that 5 is invariant under all inner automorphisms

of A2, (ew+e2i)(\ap+poik)ei2(eu+e2i) = (\aß+iJia\)e!ii£:S. Thus in

particular 2aei2, 2ae2i are in 5. We remark that this together with

Theorem 1 gives Theorem 2 of [2]. Furthermore, since (1—en/2)

• 2aei2(l +eu) =o:ei2G'S', I is an additive subgroup of A admitting the

operator 1/2 and closed under Xi+tX, XG-<4( tG7 i.e., I is a Jordan
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ideal [6, p. 491]. Hence any hypothesis on A that allows us to con-

clude that the only Jordan ideals of A are two-sided ideals will yield

the same results as for w^3. For example, it is sufficient to assume

(1) A is commutative; or (2) A is simple [4, Theorem 9]; or (3) A is

locally matrix [6, Theorem ll]. We shall, however, impose yet a

fourth hypothesis on A, namely, we assume that A is generated by

its quasi-regular elements. For if X is quasi-regular with quasi-inverse

X', (1+Xen)aci2(l+X'eii)—aei2 = Xo!e12G'S', cf. [7, p. 185]. Hence I is

a two-sided ideal, leu and Ie?\ are in 5 and so the same results as for

»>2 hold. Summing up, we have proved

Theorem 1'. Let Abe a ring with unit admitting the operator 1/2 and

generated by its quasi-regular elements. Then any additive subgroup of

Ai, not in the centre, setwise invariant under all inner automorphisms of

Aï is of the form [A2, I2]+D, where I is a nonzero two-sided ideal of

A and D is an additive group of diagonal matrices 2Xe«'«> &im&i m°d -f,

5,-+/ in the centre of A—I.

As far as invariant subrings rather than invariant subgroups go,

we only remark that every invariant subring not in the centre con-

tains the invariant subring B(I) generated by [An, /„]. This ring

may very well not be an ideal in A„: for example, if I is an ideal in

the centre of A with 72 = 0, [An, In]=B(I) is simply the invariant

subring of all matrices in /„ with trace 0. In general 5(7)D(J2)„ since

ieiji'enE;B(I), and indeed B{I) — {P)n is a zero ring. However, if A is

simple we can show

Corollary 1. If A is a simple ring with unit the only subrings of

An, «â2, invariant under all inner automorphisms of An, are subrings

of the centre or An itself (if n = 2, A has characteristic ^2).

Proof. In this case, if 5 is not in the centre, SD [An, An], the case

m = 2 being taken care of by [4, Theorem 9], and since A* = A,

B(A)=An.
We remark that Corollary 1, of course, covers the case of simple

rings with descending chain condition, which are not division rings.

However, it is also true that several of the examples of simple rings

with no minimal one-sided ideals are matrix rings of arbitrary degree

over a simple ring with unit. Thus, the simple homomorph of the

ring of all linear transformations on an infinite dimensional vector

space, the ring of all bounded operators on a separable Hubert space

modulo the completely continuous ones, and factors of type Hi and

III are all simple matrix rings. Furthermore, it is possible on the basis

of Corollary 1 to prove various theorems about the generation of



1956] MATRIX AND LOCAL MATRIX RINGS 895

simple matrix rings by rth powers, multiplicative commutators, etc.

We shall not do so here, but refer instead to the corresponding results

for simple rings with descending chain condition in [3], [5], and [7].

We now show how if w^3, the structure of the Lie and Jordan

ideals of An can be deduced from Theorem 1, thus reproving Theo-

rems 11 and 19 of [6]. We recall that a Lie ideal 8 of A„ is an additive

subgroup of An closed under [a, x] = ax—xa, a(EAn, xG8- A Jordan

ideal 3 of A„ is an additive subgroup of An such that for each a in

A and j in 3> aj+ja = {a, j}, j2, jaj, and aja are in 3- 3 then also

contains ajb+bja for any a, b in A [6, p. 491]. Then we have

Corollary 2. If 8 is a Lie ideal of An, n ^ 3, not in the centre, there

is a nonzero two-sided ideal I in A such that [An, In]<Z.%, [6, Theorem

19].

Proof. We show that S is invariant under conjugation by the trans-

vections. Since (1+Xe,y)x(l — Xßy) =x-\- [Xe,y, *]— Xe.yxrXejy it will be

sufficient to show that for every a in 8, X in A, Xe.yaXe.y, Í9¿j is in 8.

Since n ^ 3 there is an integer k ^ n such that i, j, k are distinct. Then

if a£.%, ai= [eu—e/j, a], a%= [ejk, ai], a3= [Xey,-, a2], aA= [keki, a3] all

are in 2 and so a4 = Xej¿aXej¿GS. Hence if 2 is not in the centre of An,

Theorem 1 yields the desired result. We note that if w = 2 and A

admits the operator 1/2 it is again possible to show that ? is invariant

under conjugation by transvections.

Corollary 3. Let A be a simple ring with unit and let Z be the

centre of An, n^3. Then the Lie ring [An, A„]—[An, An\C\Z is a

simple Lie ring.

Proof. SinceXe,y= [Xe<,-, e¡¡\ and en—e¡¡= [en, ei{] are in [An, An]

the same calculations as in the proof of Corollary 2 show that a Lie

ideal of [A„, An] is invariant under conjugation by transvections,

hence the result follows from Theorem 1.

Corollary 3 is a special case of a theorem recently announced by

Herstein [4, Theorem 4] and also generalizes Theorem 11 of [S].

Corollary 4. If n^3 any Jordan ideal 3 of An is an ideal of An,
i.e., 3f = /„ [6, Theorem 11].

Proof.   If   aE.3,   then  Xc,-,-aXcyG3i-   Furthermore

\ei¡a= {eij,{\e¡j, a] } — e<ya(Xeyy) -(Xe3J)ae,yG3

and so 3 is invariant under conjugation by transvections. Now if

zG3 is a centre element, z = al, cí,3ej, = ael¿G3í, so that 3 is not in

the centre. Thus the proof of Theorem 1 shows that the entries in
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the i, jth place (i^j) of the elements of 3 run through a fixed two-

sided ideal I in A. Now if a= ^2cchkehkÇz3, e«O0«=a¿,-e«G3f and so

[acuea, e,-,} =a<,e,,G3 also. Hence the diagonal entries of elements of

3 run through I too and so 3 = I„.

3. Local matrix rings. In the remainder of this note we extend

Corollary 1 to a ring R which is locally a simple matrix ring of degree

^3 in the following sense: every finite number of elements of R is con-

tained in a subring which is a matrix ring of degree ^ 3 over a simple

ring with unit.

We begin by recalling that if an element o of a ring R has a quasi-

inverse a' the mapping2 r—>(l+a)r(l+a') is called a quasi-inner

automorphism of R. Then if R contains a subring T with unit e and

if a, &GT are inverses of each other, i.e., ab = ba = e, the inner auto-

morphism t^>atb of T can be extended to the quasi-inner automor-

phism r—*(1— e — a)r(\ — e — b) of R. We then have

Theorem 2. Let R be a ring which is locally a simple matrix ring of

degree ^3, then any subring of R setwise invariant under all quasi-

inner automorphisms of R is either in the centre or all of R."

Proof. Let 5 be an invariant subring not in the centre of R. Thus

there is an s G S, and an r G-R such that [r, s] ^0. Now if x is any ele-

ment of R, x, r, s can be embedded in a subring An, n¡±3, A simple

with unit. Then Sf~\An is a nonzero subring of An, not in the centre

of An. Furthermore, since any inner automorphism of An can be ex-

tended to a quasi-inner automorphism of R, Sf\An is an invariant

subring of An and so by Corollary 1, SC\An=An. Hence xGS, S = R.

The two most common examples of rings satisfying the hypotheses

of Theorem 2 are infinite Kronecker products of matrix algebras and

simple rings with minimal one-sided ideals not satisfying the descend-

ing chain condition. That the latter are locally matrix of arbitrary

degree was proved in Theorem 9 of [ó], and since they have only 0 in

the centre such rings have no proper invariant subrings.

In addition, we can sharpen Theorem 2 somewhat to include the

case of a primitive ring with minimal one-sided ideals R. We briefly

recall the structure theory of R, cf. [6, p. 489] and the references

given there: there exists a pair of dual vector spaces M, N over a

division ring D relative to an inner product (x,f), xE:M,fÇzN, such

that R may be identified with a ring of linear transformations on M

with adjoints on N. This ring contains the ring F = F(M, N) of all

2 Here, 1 is used purely as shorthand ; R need not have a unit.

3 The corresponding extensions of the Lie and Jordan results will be found in [6].
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finite-valued linear transformations on M with adjoints on N. In-

deed, F is the socle of R, i.e. the sum of all the minimal left (or right)

ideals, and is known to be a simple ring with minimal ideals. It is

also known that R and F satisfy the descending chain condition if

and only if M is finite-dimensional, in which case R = F is simple, so

that Corollary 1 applies. Our extension of Theorem 2 then may be

stated as follows:

Corollary 5. Let Rbea primitive ring with minimal one-sided ideals

not satisfying the descending chain condition. A subring S, not in the

centre, is setwise invariant under all quasi-inner automorphisms of R

by socle elements if and only if S contains the socle.

Proof. If / is a quasi-regular socle element with quasi-inverse/',

(l+/)a(l+/') =a+socle element, thus the if part is clear. To prove

the converse it clearly suffices to show Si^F^O. Thus let s G5 be

an element not in the centre of R, then a standard argument, cf.

e.g. [7, p. 184] shows that there is a vector xE^M such that x, xs are

linearly independent. But then there is a g in N such that (x, g) =0,

(xs, g) = 1. Now define an element/ of FQR by z/ = (z, g)x for any z

in M. Then /2 = 0 and so (l+f)s(l-f)-s = Si is in Sr\F. Since
Z5i=(z, g)xs — (z, g+gs*)x, si is not zero and the corollary is proved.

Corollary 5 contains Kasch's result that a subring of the ring of all

linear transformations on an infinite dimensional vector space not in

the centre and invariant under all automorphisms is a dense ring of

linear transformations.

Finally, we remark that Corollary 5 also can be proved directly

as follows:

Since the dimension of M > 2 there is a gi^O in N such that (x, gi)

— (xs, gi)=0. Then if/1 is given by z/i = (z, gi)xs, Sjji = 0. Thus

(l+fi)si(l-fi)-s1=f1s1ES and since z/iSi=(z, gi)xssi?¿0, fei is a
transformation of the form z—*(z, g)x, (x, g) =0. It can easily be seen

that any two such transformations can be carried into each element,

and since the socle is generated by these transformations, the corol-

lary is proved.
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CANCELLATION IN DIRECT SUMS OF GROUPS

ELBERT A. WALKER1

1. Introduction. The purpose of this paper is to consider the fol-

lowing question for groups. // F®G = F'®H and F^F', when is

G=H? It is easy to see that for G to be isomorphic to H some addi-

tional hypothesis must be given. For example let C<, * = 1, 2, 3, • • •

be cyclic of order two. Let F = C2®C3®Ci® ■ ■ • , let G = &, let

F = Ci®Ct@Cs® • • • , and let H=&®Ci®Cii® • • • . Clearly
F® G = F'®H and F^F', yet G not ^H. One hypothesis that is sug-

gested by this example is to require that F be finitely generated. In

fact, in Kaplansky's book, Infinite Abelian groups, p. 13, the author

asks the following question for Abelian groups, called Test Problem

III. IfF®G = F'®H, FSÉF, and F is finitely generated, is G^H? The
main results of this paper are theorems from which Test Problem III

follows as a corollary.

2. Notations. The additive notation for groups will be used. The

symbol F®G will denote the direct sum of the two groups F and G.

The commutator subgroup of a group G will be denoted by Q{G). The

symbol {S} will denote the group generated by the set 5 of elements.

The order of an element g of G will be written o(g), and o (S) will de-

note the number of elements in the set 5. The infinite cyclic group

will be represented by C, and the cyclic group of order « by C(n). The

symbol Z(G) will denote the center of the group G.

3. Definitions. Suppose F®G = F'®H. The set of F components

of the elements of F' will be denoted by Fi, and the set of F corn-
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