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1. Introduction. In this note we consider Helly theorems on the

convergence of monotone functions of n variables. Such theorems,

first treated by E. Helly [3] in 1912 for n — l, occur frequently in one

form or another (cf. [l, p. 389], [5, p. xii], [6, p. 27]) but the authors

are unaware of an occurrence of the formulations and proofs as we

give them here. These forms of the theorems are desirable in certain

minimum problems under consideration by the authors.

To prove the Helly theorems we first find (Theorem 1) limitations

on the set of discontinuities of monotone functions. This theorem in

the case n = 2 is due to W. H. Young [7] and a proof for n = 2 is found

in Hobson [4]. In proving the Young theorem, Hobson uses as a

lemma a property of the limits of monotone functions which, as stated

in Hobson, is false.2 This property does not play a role in the proof

given here, (which was suggested by a proof found in Cramer [2,

p. 79] for a similar theorem concerning distribution functions) but we

correct the statement of the Hobson theorem in §3 where we also

determine limitations on the set of discontinuities of functions mono-

tone in their separate variables and show that a Helly theorem is im-

possible for such functions.

2. Some Helly theorems. Throughout the paper 5 shall denote

the interval a.^x.^oj, * = 1, 2, • • • , n, of euclidean «-space. Con-

sider a real valued function Fixi, x2, • • • , xn) defined on S. For each

(» — 2)-tuple p = ipi, p2, ■ ■ ■ , pn-2) and 1 ̂ v^-qán define

Vvqp\Xv,   Xq, p)

= Fipi,  Pi,  • •  •   ,  p,-\,   X„,  p„   •   •   ■   ,  pv-2,   Xn,  />,_i,   •   •   •   ,  />„_2)

provided

ai Û pi ubi, i — 1, 2, • • • , v — 1;

fli+i ^ pi á bi+i, i = v, • • • , if — 2;

fli+2 =S pi ú bi+i,      i — v — 1, • • • , n — 2.
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For each such v, r¡, p and each pair a = (ai, a2), ß = (ßi, ß2) with

a,^ai^ßi^b„ av^a2^ß2^bn define

AF„p(a, ß) = F,„(alt a2; p) +Fnp(ßi, ß2; p)

— Fy,p(ah ß2; p) — F,np(ßi, a2; p).

In this note F is said to be monotone if F is monotone nondecreasing

in Xi for each i = l,2, ■ • • ,n, and if AF,VP(a, ß) ^0 for all v, rj, a, ß, p.

Thus a function is monotone provided all its first and second

differences are non-negative. No higher differences than the second

are needed in the paper. The requirement of non-negative differences

is convenient in wording the proofs of the paper. However, the results

hold if F is of mixed monotoneity in its individual variables and one

may also allow the inequality on the second difference to be A ^ 0 or

AgO depending on v, r¡ in the quintuple v, rj, a, ß, p but for a fixed

v, r¡, ASïO or AgO for all admissible a, ß, p.

Theorem 1. If F(xu x2, • ■ • , xn) is a real valued monotone function

on S, then there is a set R consisting of the points of a countable collection

of (n-í)-spaces Xi=a¡, i = l, 2, • • • , n, j = l, 2, ■ • ■ , such that F is

continuous at all points of S—R.

Proof. F(bi, b2, ■ • • , bi-i, xit bi+i, • • ■ , bn) is a monotone function

of Xi; hence it has a countable number of discontinuities xi=aii,

j = l, 2, • ■ • . If we denote by R the points of the sets Xi=a¡, i = l,

2, • • • ,n,j = l,2, • ■ • in S, then we shall show that F is continuous

at each point of S—R.

Suppose e>0 and (xi, x2, ■ ■ ■ , xn)ES—R are given. Let

5 = min (5i, ô2, ■ • • , bn) where S,->0 is such that

F(bi, ■ ■ ■ , bi-i, Xi + | hi \, bi+i, ■ • ■ , bn)

— F(bu • • • , bi-i, Xi — | hi |, bi+i, • • • , bn) < e/n for | A¿ | < 5¿.

Consider x+A = (xi+Ai, x2 + h¡, ■ • ■ , xn+hn) where |A,| <5¿, i = l,

2, • • • , n. Then

| F(*i + Ai, • • • , xn + A„) - F(xu ■ ■ ■ , Xn) |

g F(xi + | Ai |, • • ■ , xn + | An | ) - P(*i - | Ai |, • • • , xn - | A„ | )

n

= 23 {P(*i + I Ai |, • • • , Xi + | hi \, Xi+i - | Ai+i |, • • • , xn — I An |)
¿=i

— F(xi + | Ai |, • • • , Xi-i + | A¿_i |, Xi — | hi \, ■ ■ ■ , xn — | An | )}
n

g 23 {P(*ii • • • > °i-u Xi + | h{ \, bi+i, • • • ,bn)
»-i

— F(bh • • • , bi-i, Xi — | In \, bi+i, ■ ■ ■ ,bn)} < e.
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The first sum is obtained by elementary addition and subtraction,

our functional symbols in the summand being subject to the con-

vention that any argument with subscript outside the range 1 to «

which may seem to appear is understood to have been omitted. To see

the next to the last inequality consider the typical difference in which

the ith coordinate is changed from x¿+|A<| to x,-—|A,-|. If a = (xi

+ |Ai|i *.— |*<|)i ß = ibi, Xi+\hi\), j/ = l, n = i, p = (x2 + \hi\, ■ • • ,
Xi-i +1 A,_i |, xi+i - | Ai+i |, • • • , x„ -1 A„ I ) then

AFup(a, ß)^0

implies

F(xi + | Ai |, • • • , Xi + | hi \, ■ ■ ■ , xn - | A„ | )

— F(xi + | Ai |, • • • , Xi — | hi \, • • ■ , x„ — | An | )

^ F(bi, Xi + | A21, • • • , Xi + | hi \, ■ • • , xn — | An | )

— F(h, x2 + | A21, • • • , Xi — | hi |, • • • , Xn — | A„ | ).

After n — 2 applications of A^O we take a = (x,— |A¿|, x„— |â„|),

ß = (xi+\hi\,bn),p = (bu ■ ■ ■ , &,-_i, bi+i, ■ ■ • ,bn-i),v=i,-q=n.Since

AFimp(a,ß)^ Owe have

7^(61, • • • , bi-i, Xi + I hi |, 6*4.1, • • • , x„ - I A„ I )

- F(bu • • • , bi-i, Xi - I hi |, bi+i, ■ ■ ■ , xn - \ hn \ )

^ F(bu ■ ■ ■ , bi-i, Xi + I hi \, bi+u ■ • ■ , bn)

— F(bi, • • • , bi-i, Xi — I hi \, bi+1, • • • , bn).

This procedure yields the desired inequality and completes the proof

of the theorem.

Theorem 2. Let {Fq(xi, x2, • • • , xn)} be a sequence of monotone

functions on S, and let A be a positive number such that \ Fq(xi, x2, • • • ,

x„) I ^A for g = 0, 1,2, •••. There exists a sequence of integers

ço < qi < Ç2 < • • •

and a monotone function F(xi, x2, • • • , xn) bounded by ±A such that

lim Fqi(xi, Xi, • • • , xn) = F(xi, Xi, • • • , xn) on S.
Í—*as

In the proof we shall have use for the following selection principle

[6, p. 26]. Let the real constants am,q be such that |am,s| ^A, for

m, 2 = 0, 1, 2, • • • . Then there exists a sequence of positive integers

5o < ?i < ?2 < • • •
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and a set of reals ao, ai, a2, • • •  such that

lim am,qi = am, for m = 0, 1, 2, • • • .

Arrange the rational points (i.e. points with all coordinates ra-

tional) of 5 in a sequence

x   J  = {(Xi, x2, ■ ■ ■ , xn)\

and consider the sequence

am,q = Fq(xm) = Fq(x?, • • • , Xn), m, q = 0, 1, 2, • • • .

By the selection principle given above we secure a sequence of

integers

(1) ?o,o < ?o,i < ço,2 < • • •

such that

lim Fq<)ti(xm) = F(xm).
<->O0

Let

lim swpFq0ti(x) = F*(x),       lim inf Fqo¡i(x) = F*(x),
i—»00 i—»00

for x = (xi, ■ ■ • , xn)ES. Clearly,

F(xm) = F*(xm) = F*(xm), m = 0, 1, 2, • • • .

One verifies that the functions F*(x) and P*(x) are monotone on 5.

Let y = (yi, ■ • • , yn)ES be an irrational point which is a common

point of continuity of F* and P*. Then F*(y) =P*(j) since y can be

approximated by rational points. We define

F(y) = F*(y) = F*(y).

At this stage of the proof we have defined F at all rational points and

at all common points of continuity of F* and P*.

The remainder of the proof is by induction on n. The theorem has

been proved [6, p. 27] for « = 1 and we now assume the conclusion

holds for n — 1.

By Theorem 1, the discontinuities of F* and P* lie on a set R con-

sisting of the union of sets of the form xi=a1i. Let T{ be all points of

xi=a'l and order the sets Y{ by the agreement that T' precedes T" if

í<m or if s = u and r<t. Denote the resulting sequence by {T,}.

Ti is an (n — l)-cell hence, by our inductive hypothesis, there is a

subsequence
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(2) quo < çi.i < qi.i < • • •

of (1) such that lim^M Fqii(x) converges on Ti and clearly this func-

tion will agree with F(x) wherever it has been defined.

Now, using induction on g, for each g there is a sequence

(g+ 1) Çî.o < q„,i < q„,2 < ■ ■ ■ ,

a subsequence of (1), (2), • • • , (g), such that

limF, .(*)

exists on Ti, Tt, • • • , Ta and at all points where F(x) was defined it

will agree with F(x).

Finally lim¿„M Fqii(x) exists at all points of S and is monotone in

5. The proof of the theorem is complete upon observing that we may

take qi = qi:i.

If x1 and x2 are points of S, we write x1 -< <x2 if each coordinate of

x1 is less than the corresponding coordinate of x2 and x'-<x2 if no

coordinate of x1 is greater than the corresponding coordinate of x2.

For an arbitrary point v of 5 let [a, v) denote the interval {x: xES,

x< <v} and let [a, v] denote the interval {x: xES, x<v}. A Le-

besgue measurable set of 5 which is the union of intervals of the type

[a, v) and (or) [a, v] will be termed a lower layer. The boundary of a

lower layer will be termed a monotone graph. In particular, if F(x),

x = (xi, x2, • • • , xn), is monotone in its separate variables and r is a

real constant, then the set {x: xES, F(x) <r\ is a lower layer.

Let M denote the class of all extended real valued functions F(x),

x = (xi, x2, • • • , xn), — oo g F(x) :§ + oo, defined on S, monotone non-

decreasing in each of their n separate variables and having non-

negative second difference when the four points of the second differ-

ence determined by a, ß, p are in the complement of the closure of the

set on which the function is + oo or — oo.

For such extended monotone functions one is able to prove the

following theorem using Theorem 2 as a lemma.

Theorem 3. Let {Fq(x)} be a sequence of elements of M, then there

exists a sequence of integers

qo < qi < qi < ■ • •

and at least one function F(x)EM such that limi<w Fqi(x) = F(x) ex-

cept on at most two monotone graphs.

The two possible exceptional monotone graphs are, respectively,

the boundaries of lower layers where  F* = F* = — oo   and  where
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P* =i P* < °° ; here P* and P* are, respectively, lower and upper limits

of a subsequence which converges at each rational point of S. The

proof of Theorem 3 uses Theorem 2, but does not require explicitly a

theorem describing the discontinuities of a function of M. However,

the following analog of Theorem 1 is easily established.

Theorem 4. If F(x)EM, there is a set R consisting of points of a

countable collection of (n-l)-spaces Xi = a¡, i = l, 2, • • • , n;

j= 1, 2, ■ • ■ , together with at most two monotone graphs such that F(x)

is continuous at all points of S — R.

It is understood in the statement of Theorem 4 that if F(m)

= 4- oo (— oo) and F(x) is 4- oo (— oo) in a neighborhood of m, then

F(x) is continuous at m.

3. Functions monotone in their separate variables. The first theo-

rem stated in this section concerns a function F(x, y) of two variables

and is given by Hobson [4, p. 390] for functions monotone in their

separate variables (Hobson uses the term "quasi-monotone" for the

term "monotone" of this paper). That Hobson's theorem is false2 can

be seen from the example/(x, y)=0, x+y<0; f(x, y) = l, x+y^O.

Hobson's proof is valid in quadrants I and III but fails in II and IV.

Theorem 5. Let F(x, y) be monotone in a plane region with (a, b)

as an interior point. Consider the "quadrants" I: x>a, y>b; II: x<a,

y>b; III: x<a, y<b; IV: x>a, y<b about the point (a, b). In any

one of these quadrants limlH.0>VH.6 F(x, y) =limI^0 lim„..6 F(x, y) =limy^¡,

limI<a F(x, y) where in each case the approach to a, b and (a, b) is con-

fined to the given quadrant.

We have no need for Theorem 5 in this paper and omit its proof.

Since Hobson's proof is valid in quadrants I and III, the limit exists

for an approach to (a, b) within either of these quadrants, even if F

is only monotone in x and y separately and fails to have a second

difference of constant sign. It is of interest to observe further that if

the limits from quadrants I and III are identical, F is actually con-

tinuous at (a, b). Indeed, we have the following result, in which the

continuity hypotheses on P at (a, b) are only apparently weaker than

one requiring the limits from within I and III to coincide.

Theorem 6. Let F(x), x = (xi, x2, • • ■ , xn), xES, be monotone non-

decreasing in each variable x,-. Let m = (m\, • • • , mn) be a point of S

and denote by I all xES such that x,>w,-, i = l, 2, ■ • -, n, and by III

all xES such that Xi<mit i = l, 2, • • ■ , n. If for each e>0 there exists

a = (au a2, ■ ■ ■ , a„)GI andß = (ßx, ß2, ■ ■ ■ , ßn)EHlfor which F(a)

— F(ß) <€ then F(x) is continuous at m.
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Proof. Given e>0 let x be any point of 5 such that a,áXi^/3,-,

î' = 1, 2, • • • , n, then ¡F(x)-F(m)\ ^F(a)-F(ß)<e and the proof

is complete.

We observe that the condition: corresponding to each «>0, are

a, ß in I and III, respectively, such that F(a) — F(ß) <e, is equivalent,

for example, to the condition: there exists a line through m lying in

I and III on which F(x) is continuous at m.

In the final two theorems of the paper we describe the discontinui-

ties of functions defined on 5 and monotone in their separate variables

and show that a Helly theorem similar to Theorem 2 is impossible for

such functions.

Theorem 7. // F(x), x = (xi, x2, • • • , x„), is finite and monotone

in its separate variables on S, then the discontinuities of F(x) lie on a

countable set of monotone graphs of S.

Proof. For each rational number r, let Tr denote the monotone

graph defined by the lower layer Cr={x: xES, F(x)<r}. That is,

Tr is the boundary of Cr. We shall show that any point of discontinu-

ity of F(x) is on rr for some rational r.

If mES is a point of discontinuity of F(x), by Theorem 6,

lim    Fix) ?*     lim     Fix).

If r is any rational number between these limits, then mE^r and the

theorem is proved.

It is easily seen that the preceding theorem holds when F(x) is

permitted to take on the values + oo and — oo.

Theorem 8. There exists a uniformly bounded infinite sequence of

functions monotone nondecreasing in their two variables on a rectangle S

such that no infinite subsequence of the sequence converges on S to a single

valued function.

To prove Theorem 8 it suffices to take the unit square as 5 and to

define F„(x, y)=0 for x+y<l, Fn(x, y) = i for x+y>l, F„(x, 1— x)

=d)n(x), n = \, 2, • • • , where <pn(x) is a sequence of functions defined

on [0, l], bounded between 0 and 1, from which no everywhere con-

vergent subsequence can be extracted.
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ABELIAN RINGS AND SPECTRA OF OPERATORS ON lp

G. L. KRABBE

1. Introduction. Let lp denote the set of all sequences c= \cn} such

that ||c||j) = (23"--°o lc»| p)Up< ». If a and c are sequences, the con-

volution a * c is defined as the sequence {bn} such that

Ob

[a*c]n = bn =   23 an-,c„ (n = 0, ±1, ±2, ±3, • • • )•
»=-00

Suppose i is a bounded and summable function on the interval

[—x, it], and denote by $A the sequence [an] of Fourier coefficients

of A. The "Laurent matrix" (a„_„) represents a transformation Atp

defined for any c in lp by Afpc=($A) *c. The following properties

were proved for p = 2 by O. Toeplitz [ll] and F. Riesz [8, pp. 171-

175]:
(i) Afp is a bounded operator on lp,

(ii) if B(9) = [¿4(0)]_1 defines a bounded function B, then the inverse

(Atp)-1 of Afp exists, and (Afp)-1 = Bfp,

(iii) if A is continuous, then the spectrum a(Atp) of AtP is the range1

of A.
Assume henceforth that p>l. This case was not considered by

Toeplitz and Riesz; their results depend on the circumstance2 that

Presented to the Society April 15, 1955 under the titles Certain abelian rings of

operators on lp and On the spectra of certain operators on lp; received by the editors

January 31, 1955 and, in revised form, July 25, 1955 and October 11, 1955.

1 The range of A is the image A([ — w, ir]).

2 The introductions to [3; 4] contain a concise account of these matters.


