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PARTIALLY BOUNDED CONTINUED FRACTIONS

H. S. WALL

For each complex number sequence a, f(a) denotes the continued

fraction

1       ai      a2      a$

T + T+T+T+ —

The statement that/(a) is partially bounded1 means that the sequence

a has a bounded infinite subsequence. If/(a) is partially bounded, the

series ¿d¿>P| diverges, where ¿>i=l, ap = l/bpbp+i, p = i, 2, • • • , —a

necessary condition for convergence of f(a).

Any continued fraction/(a) such that zZ'^pI diverges is conver-

gent provided its even and odd parts are absolutely convergent,2 i.e.

provided the series ^2\f2p+2 — f2p\ and ^|/2p+i—/2p-i| are conver-

gent, where {/P}"=i is the sequence of approximants. The simple

convergence of the even and odd parts of f{a), together with the

divergence of 2Z|6,,|, is not sufficient for the convergence of /(a),

(Theorem 3). However, the simple convergence of the even and odd

parts of the partially bounded continued fraction f(a) is sufficient

for the convergence of/(a). In fact, we have this theorem:

Theorem 1. Suppose there is a positive integer k such that the sub-
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1f(a) is called bounded if the sequence a is bounded—a condition equivalent to the

boundedness of a certain infinite matrix. Cf. H. S. Wall, Analytic theory of continued

fractions, 1948, p. 110. (Referred to later on as AT.)

» Trans. Amer. Math. Soc. vol. 67 (1949) pp. 368-380.
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sequence {/*}"-» of the sequence of approximants of the partially

bounded continued fraction f (a) is bounded. If the even (odd) part off(a)

converges and has the value v, then there is an infinite subsequence of the

sequence of approximants of the odd (even) part of f(a) which converges

to v.

Proof. Let AP and Bp be the pth numerator and denominator of

f(a), so that A0 = 0, Ai = l, BB = 1, Bi = l,

P - 1, 2,
Ap+i = Ap + apAp-i,

Bp+i = Bp + CpBp-i,

and

ApBp+i — Ap+iBp = APBp+2 — Ap+2BP

= (-i)'+1aicn ■ • • ap, p = 1, 2, • • •.

Therefore, if p^k,

(-l)j*iffl0l. • . ap _(-l)»+1a1a2--- aP

fP - fp+i - — >    fv-fp+t - — >
£>pJop+\ JjpJ3p+2

and consequently3

— Up+i(fp — fp+i)(fp+i — fp+i) — (fp — /j>+i)(/j>+2 — fp+a)t

or

I &P+î(fp ~ fp+i)(fp+i — fp+i) \    =   I (fp — fp+l)(fp+i — fp+i) |.

Suppose the even (odd) part of f(a) converges to v and that no

infinite subsequence of the sequence of approximants of the odd

(even) part of f(a) converges to v. Then, there exists a positive num-

ber c and a positive integer m greater than k such that if p is a positive

integer greater than m,

ber such that, if p^k,
(fp-fp+i)(fp+2-fp+i)\ ^c- Let Ai be a num-
fp—fp+2\ $¡M, and let L be a number such

that, for each positive integer r there exists a positive integer j

greater than r for which |a,+2| í¿L. There exists a positive integer N

greater than m such that if p is an integer greater than N, \fP—fP+2\

<c/ML or |/p+i —/p+31 <c/ML. Hence, there exists a positive integer

5 greater than N such that c^\at+2(f,-fe+2)(f,,+1-ft+3)\ ^LM

• (c/LM) = c. This contradiction proves our supposition false and

establishes the theorem.

* This formula expresses the fact that ar+s is a cross-ratio of four successive ap-

proximants of f{a). Cf. Wall, Bull. Amer. Math. Soc. vol. 40 (1934) pp. 578-592.
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Theorem 2. // the even and odd parts of the partially bounded con-

tinued fraction f (a) converge, then f (a) converges.

This is an immediate corollary to Theorem 1.

Theorem 3. There exists a divergent continued fraction f(a) whose

even and odd parts converge for which the series z2\bp\ diverges.

Proof. Let a denote the sequence defined by ap = ( — l)p(p + l)2,

p = \, 2, •••. Since \bpbv+i\ 1'2 = 1/(0 + 1) Ú [| bp\ + | bp+i\ ]A the
series 231 ^p| diverges. The even part of/(a) is —f(c)/3, where c is

the sequence defined by cp = p2(2p + l)/(2p — 1), p = \, 2, • • • , so

that the even part oí fia) converges4 and its value is a negative num-

ber. The odd part of /(a) is l+2/(d)/3, where d is the sequence de-

fined by dp=(p + l)2(2p + l)/(2p + 3), p = l, 2, • • • , so that the odd
part of/(a) converges and its value is a number greater than 1. Hence

f(a) diverges.
A corollary to Theorem 2 is the following theorem of Farinha.6

Let E denote a bounded closed set in the complex plane which does

not contain 0. If the even and odd parts of/(a) converge uniformly

for ai in E, then f(a) converges uniformly for a¿ in E.

As an application of Theorem 2, we shall prove the following ex-

tension of a theorem of Thron.6

Theorem 4. Suppose r is a positive number not greater than 1 and s

a positive number less than (1 +r)~2. The continued fraction f(a) such

that \a2p\ gr2 and \ l/a2p_i| á(l+r)-2 — s, p = í, 2, • ■ • , is conver-

gent.

Proof. Since/(a) is partially bounded, it suffices to show that its

even and odd parts converge.

The even part of/(a) may be written as

•/ 2 2
t/fll Ci c2

&i + is — b2 + is — ¿>3 + is —

where

i        a2p-t      ,        j a2p
bp = i -\-1-w,   cP =-,    p = 1, 2, • • • , (a0 = 0).

a2p-.i     a2p-i a2p+i

« AT, pp. 58-59.

6 Rev. Fac. Ci. Univ. Coimbra vol. 23 (1954) pp. 17-20.
« Duke Math. J. vol. 10 (1943) pp. 677-685, p. 680. Thron restricts r to be less

than 1. Cf. Leighton and Wall, Amer. J. Math. vol. 58 (1936) pp. 267-281, p. 267,
for the first theorem of this type.
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For each positive integer p, ft = Im bp^2r(l-\-r)~2+r2s>0, and there

exists a number 0P and a number tp such that

I cp I  = I ——- J dp,      Re cp = I ——J 6ptP,

0áo,á 1, -1 ûtp £ 1.

Then,

I cSp I   - Re 4 (1 + r)29„(l - /p)

2ftft+1 = 2(2 + r - reptp)(2 + r - r0p_1iJ)_i)

Since the derivative with respect to r of the last expression is non-

negative, it does not exceed

20p(l - tp)
-p-——,
(3 — 9ptp)(3 — dp-itp—i)

so that, if hP= (1 —tp)/2 and gp= [l+dphp]-1, we have:

I cp I   - Re Cp g 2ftft+i(l - gp)gp+u

0 < gp á 1, P - 1,2, . •..

Thus, the even part of f(a) is positive definite7 and, being bounded,

is convergent.8

The odd part of f(a) may be proved convergent in the same way,

completing the proof of Theorem 4.

George Copp9 has improved Theorem 4 by showing that f(a) con-

verges if there is a positive number r not greater than 1 such that

\a2v\ ¿r2 and |fl2p-i| ¡^(l+r)2, p = l, 2, • • • . He also showed that

f(a) converges if there exists a positive number r less than 1 such

that, for each positive integer p, \a2p\ ^r2 and |ß2p-i| á(l— r)2 or

kp-i|2=(l+r)2.

University of Texas

7 AT, p. 69.

8 AT, p. 112.

• George Copp, Some convergence regions for a continued fraction, Dissertation,

The University of Texas, 1950.


