
ON COLLINEATIONS OF SYMMETRIC DESIGNS

E. T. PARKER1

This note is concerned with systems known as symmetric balanced

incomplete block designs, or (v, k, X) configurations. (See [l ] for back-

ground and bibliography.) Following the terminology of projective

geometry, the elements and the distinguished subsets will be called

points and lines respectively. A collineation is a permutation of the

points which preserves the class of lines without regard to order of

points within lines.

First will be established:

Theorem 1. Any collineation a of a (v, k, X) configuration permutes

the points and the lines in such manner that there exists a one-to-one

correspondence between cycles of points and cycles of lines with each pair

of cycles of the same length. In particular a fixes equally many points

and lines.

Proof. Number the points pi, • • • , pv and the lines h, • • • , I,.

Let A be the incidence matrix for the design defined by A = (aa),

a,7= 1 if piCh and 0 otherwise, a corresponds to a unique pair (P, Q)

of permutation matrices such that PA =AQ. P and Q permute the

points and the lines respectively. A is nonsingular. Thus A~lPA =Q.

P and Q being similar have the same set of characteristic roots with

like multiplicities.

For each divisor d of the order of the permutation P, each primitive

dth root of unity is a characteristic root of P with multiplicity equal

to the number of cycles of P of length divisible by d. Counting char-

acteristic roots, it follows that P and Q have equally many cycles of

any length.

Using the above will be proved:

Theorem 2. Any group G of collineations of a (v, k, X) configuration

has equally many transitive sets on the points and on the lines. (Note:

a fixed point or line is counted as a transitive set.)

Proof. Let g be the order of G. G is represented by pairs (Pt, Qt),

t = l, • • • , g, of permutation matrices, Pt and Qt on points and lines

respectively. The total number of points fixed [2 ] by all the P, is rg,

where r is the number of transitive sets (counting fixed points) of
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{Pt} ~G. Likewise the Qt fix r'g lines, r' the number of transitive sets

01 {Qt} ~G. By Theorem 1, each corresponding Pt and Qt fix equally

many points and lines. Summing over the elements of G, rg = r'g, so

that G has equally many transitive sets of points and lines.

Added February 16, 1957. Another fairly immediate consequence is

the following:

Theorem 3. If a (v, k,X) configuration with incidence matrix A has

a collineation defined by PA =AQ, where P and Q are permutation

matrices, then the configuration possesses an incidence matrix A' such

that PA'= A'P.

Proof. By Theorem 1, the permutations defined by P and Q are

similar, and hence conjugate in the symmetric permutation group of

degree v. Thus there exists a permutation matrix R such that Q

= R~1PR. In turn, PA=-A(R~1PR), so that P(AR-1) = (AR~1)P.

AR*1 is merely the incidence matrix A with columns permuted; the

A' asserted to exist is AR-1.

Theorem 2 has been proved by entirely different methods by D. R.

Hughes in a forthcoming paper in the Transactions of the American

Mathematical Society.
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