210 JEAN DIEUDONNE [April

This proves the theorem.
The writer is indebted to Professor P. R. Garabedian for suggest-
ing that a counterexample of this type must exist.
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1. Professor G. Whaples has kindly drawn my attention to the
very similar properties enjoyed by the series which I called the Witt
hyperexponential in a recent paper [2], and a series which he had
previously defined, using the Artin-Hasse exponential series [5]; the
main fact is that both series define a homomorphism of the Witt
group W onto the multiplicative group Wf. In answer to his ques-
tions, I propose in this note to clear up completely that relationship,
by determining all formal power series which define such homo-
morphisms, in other words, what one might call the formal characters
of the group W; it turns out that the Artin-Hasse-Whaples series is
the simplest member of that family, from which all others can be
deduced by a simple transformation. I am indebted to Professor
Whaples for several useful remarks and comments, as well as for
pointing out a slight error in one of my original proofs.

2. Let (ao, @1, - * *, @i, + - + ) be an infinite sequence of rational
numbers, and let us consider the power series in one indeterminate x

(1)  exp (aox + a1x? + ax? 4 oo FaP 4 - ) = Z Cnx™

n=0
where p is a prime number.

PROPOSITION 1. In order that in the series (1) all coefficients c, be p-
adic integers, a necessary and sufficient condition is that, for each 120,
one should have
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ai—1

4

(2) a; = + b; (a1 =0)

where each b; is a p-adic integer.

To show conditions (2) are sufficient, we remark that the simplest
solution of (2) is a;=1/p for 1= 0; the corresponding series (1) is the
inverse of the Artin-Hasse series (as defined, for instance, in [4]),
in other words the series

Fo(x) = I{I (1 — xm)—w(mim

where p is the Mébius function; it is elementary to prove that its
coefficients are p-adic integers (see [5, p. 576]). Now, in general,
relations (2) imply

b b bi
Gi=—t —— ek — by
PP
therefore the series (1) can be written
3) (Fo(x))o(Fo(27))? - - - (Fo(x'))s -

and the same elementary argument shows that each of the factors
has p-adic integers as coefficients (since the denominators of the b, are
prime to p).

Conversely, suppose the ¢, are p-adic integers, and suppose we
have proved (2) for 2 <k; then the series obtained by multiplying (1)
with the product

((Fo(2))2o(Fo(x7))" - - - (Fo(x™))?)

has p-adic integers as coefficients; on the other hand, it can obviously
be written

exp (dnp127"" + dppan® " + - - - )

with diy1=as41—an/p; writing that the coefficient of x# " is a p-adic
integer proves (2) for ¢ =#h, which concludes the proof of Proposition
1.t

3. If we suppose conditions (2) verified, and if we replace in (1)
each coefficient ¢, by its class mod p, we obtain a power series E(x)
with coefficients in the prime field F,. For an indeterminate Witt
vector x=(xg, X1, * * *, Xn, - - - ), let us now define

! As observed by Professor Whaples, Proposition 1 and its proof are still valid if
the a; are supposed to be p-adic numbers.
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4) E(x) = E(w, %1, ++*, &4y ++) = H E(x;)

i=0
each indeterminate x; being considered as having weight p?; in par-
ticular, if we start from the power series Fy(x), the power series
Ey(x) which we obtain in that way is the inverse of the Artin-Hasse-
Whaples series [5, p. 576].2 Now, from the definition of the Witt
additive group, it follows at once that

() Ey(x)Eo(y) = Eo(x + )

where y = (o, %1, - * *, ¥u, + + + ) is a second indeterminate Witt vec-
tor, and x+y is the sum taken in the Witt group.

We are now going to obtain simple expressions of E(x) in terms of
Eo(x). For an indeterminate z, and a p-adic integer b= D r o vsp*
(0=w=p—1), we define (see [1, p. 241]) the power series (1+2)®
with coefficients in F, as the product []7, (1+zPh)""
=1 (142", If ¢ is a second p-adic integer such that b=c¢
(mod p"), the terms in (142)® and (14-2)¢ have the same coefficient
for all exponents <p", from which remark the relation

(L+ 2 = (1 + 91 + 2)¢

follows immediately by an obvious limiting process. In particular if
b=r/s is a rational number, we have ((1+42)?)*=(142)", hence in
that case (142)? can also be obtained by reducing mod p the rational
coefficients of the binomial series (142)/* (which are p-adic integers
if b is a p-adic integer).

Using these elementary remarks and the fact that the coefficients
of E¢(x) are in the prime field F,, it follows from the expression (3) of
the series (1) that we have

(6) E(x) = (Eo(x))®(Eo(x))?? - - - (Eo(x))*@" - - - = (Eo(x))®
where b is the p-adic integer bo+bip+ - - - +bip*+ - - - (which of

course is no more a rational number, in general). Hence, from defini-
tion (4), we also have

(7 E(x) = (Eo(x))*

for Witt vectors. Taking into account the multiplicative property
(14x)2(14y) = (14+x+y+xy)®, we deduce therefore from (4) and (7)

(8) E(x)E(y) = E(x + y);

2 More precisely, this series is the one which would be written (E(X, 1))7! in the
notations of [5, p. 576].
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we observe that this gives a much simpler proof of Proposition 2 and
its Corollary 2 in [2].

Let us now show that the expression (7) of E(x) can also be trans-
formed in the following:

9) E(x) = Eo(b-x)

where the product b-x is understood in the following way: let us
write b=0+Lip+ : -+ +Bup*+ - - -, where the p-adic integers B,
belong to the set of Teichmiiller representatives (in this case, the
(p —1)th roots of unity in the p-adic field); if B, is the class of S8
in F, and B is the Witt vector (Bo, B1, - -+, Bn, - - - ), b-x is by
definition the Witt vector 8- x, where the product is of course taken
for the Witt multiplication. To prove (9), we observe that it fol-
lows at once from (5) that Eq(b-x) =(E(x))® when b is an ordinary
integer, for then 8- x is just the sum of b vectors equal to x [6, p. 133].
On the other hand, if two p-adic integers b, ¢ are such that d=¢
(mod p™), it follows immediately from the preceding definitions that
the terms of weight <p™ are the same in the series E(b-x) and
E(c-x), and the same is true for the two series (Ey(x))? and (Ey(x))¢,
which ends the proof of (9).

4. We are now going to see that the expression (9) gives in fact
the most general F,-homomorphism of the Witt group W into the
multiplicative group Wy. More generally:

ProrosiTiON 2. If K is a field of characteristic p, any formal K-
homomorphism of W into W is of the form Eo(A -x) where A is a Witt
vector with elements in K, and the product A-x is taken for the Witt
multiplicative law.

Let the series u(x) with coefficients in K, define a homomorphism
of W into WY, in other words be such that %(x+y) = u(x) - «(y). Sup-
pose we have proved the existence of a Witt vector 4, such that both
series #(x) and Eo(4-x) have the same terms of weight <p*. It fol-
lows that we may write #(x)=FE(4s x)v(x), where v is another
homomorphism; if v =1, our proof is ended. If not, let v(x) =14 P(x)
4+ - -+, where P is the sum of all nonconstant terms of smallest
weight in v, and therefore an isobaric polynomial of weight m> p*.
Writing the relation v(x+y) =v(x) -2(y), and remembering that the
Witt additive group law is isobaric, we obtain

P(x +y) = P(x) + P(y).

But it follows from the argument in [3, p. 432] that such a relation
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implies that P only contains x,, and therefore is of the form b2
with €K and k>h. Let B=(, -, 0,5, 0, ---) be the Witt
vector having all its components equal to 0 except the component of
index k, equal to b; then v(x) and Ey(B-x) have the same terms of
weight <p*, and therefore, if we put A, =4,+B, u(x) and E¢(4-x)
=Ey(A-x)E¢(B-x) have the same terms of weight =p*. The induc-
tion can thus proceed, and it is clear that the sequence (4x) of Witt
vectors tends to a limit 4 such that 4, and 4 have the same com-
ponents of indices <#h; hence E (4 -x) and E(4;-x) have the same
terms of weight Z<p*, and as k is arbitrary, this ends the proof of
Proposition 2.
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