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1. Let M be a manifold and let G be a compact Lie group acting

on M. For xEM, Gx denotes the isotropic subgroup of G at x, that is,

the subgroup consisting of all the elements of G which leave x fixed.

Then the following problem has been raised by Montgomery (see

Ann. of Math. (2) vol. 50 (1949) p. 260): Do there exist a finite num-

ber of subgroups of G such that each Gx is conjugate to one of them?

The purpose of this note is to show that, if M is compact and differ-

entiability is assumed, then the answer is in the positive. Whether

this result remains true without the assumption of differentiability

is still unsettled. But if M is not compact, it is known that even for

the analytic case the answer is in the negative. We shall give below

an example to this effect, which was communicated to the author by

Professor Montgomery.

2. Theorem. Let M be a differentiable manifold and let G be a com-

pact Lie group which acts differentiably on M. Then for each point p of

M there exists a neighborhood U of p and a finite number of subgroups

of G such that the isotropic subgroup of G at any point of U is conjugate

to one of these subgroups.

Proof. The proof of this theorem relies on a lemma by Montgom-

ery, Samelson and the author (see Ann. of Math. (2) vol. 64 (1956)

p. 136), which says: If Afand G are as in the theorem and p is a point

of M, then there is a closed cell K in M and a closed cell Q in G satisfy-

ing the following conditions:

(i) K contains p and Q contains the identity of G.

(ii) Whenever gEG and xEK, g(x)EK if and only if gEGp.

(iii) There is a coordinate system on K such that (a) K is a closed

spherical neighborhood of p in K and (b) Gp acts orthogonally.

(iv) The function (g, x)—>g(x) defines a homeomorphism of QXK

onto a neighborhood of p.

Suppose that the theorem is false. Then there exists a point z of

M such that every neighborhood of z contains an infinite set F such

that, whenever x, yEF, Gx and Gy are not conjugate. The totality of

such points z is clearly a closed subset S of M invariant under G. Let

S' be the subset of .S consisting of all the points z such that dim Gz

= infi6s dim Gx. Then there is a point p of S' such that Gp has the

least number of components among those Gz, zES'. Therefore for any

z in S, Gz is not a proper subgroup of Gp.
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According to (iii), there is a coordinate system (xu ■ ■ ■ , x„) on K

with p as its origin and such that (a) K is given by x\+ • • • +x2n^l

and (b) Gp acts orthogonally. By (b), the fixed point set A of Gp in K

is linear and then it may be assumed to be

Xi =   • • •   =  X, = 0, Xr+i +  ■ ■ ■  +  Xn g   1.

From (ii), it is easily seen that whenever xCK, GXCGP. Therefore

GX = GP for every xCA.

Let B be the (r —1) -sphere

t t
Xi +   ■ ■  ■   +  Xr =   1, XT+1 =   •  • •   =   X„ =  0

and let/: K—A—*B be the map defined by

f(xh ■ ■ • , xn) = (xi/d, • • • , xr/d, 0, • • • , 0),

d =   (Xi +   • •  •   +  Xr)   .

For any xCK, both Gx and G/(X) are contained in Gp. It follows from

(b) that GX = G/(X). Since p is a point of S and (?(i£) is a neighborhood

of p, there exists, by definition, an infinite set F in G(K) such that,

whenever x,yCF, Gx and Gv are not conjugate. Let/ be the projection

of Q(K) on K (see (iv)). It is clear that for any xCQ(K), Gj(x-, and

Gx are conjugate. Therefore j(F) is an infinite set such that whenever

x, yCj(F), Gx and Gv are not conjugate. Since for every xCA, Gx — Gp

and for every xCK—A, GX = G/(X), it follows that F' =f(j(F)—A) is

an infinite set having the same property. F' is a subset of B and then

has a limit point z. By definition, z belongs to S. Since zG-K— A,

G, is a proper subgroup of Ctp. This contradicts our choice of p.

Hence the theorem is proved.

Corollary. Let M and G be as in the theorem. If M is compact,

then there exist a finite number of subgroups of G such that the isotropic

subgroup of G at any point of M is conjugate to one of them.

3. Now we are in a position to construct a noncompact analytic

3-manifold M on which there is a circle group G of analytic trans-

formations such that every finite subgroup of G is a Gx for some x in

M. As mentioned above, this example is due to Professor Mont-

gomery.

Roughly speaking, M is obtained as follows: Cut a sequence of

mutually disjoint open anchor rings off the euclidean 3-space, "twist"

them and then piece them back to their complement. It is done in

such a way that, if it is done for only one of these open anchor rings,

the obtained space has a lens space as its one-point-compactification.
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We shall use the same symbol to denote a congruence class mod 27T

and any real number in this class. The additive group of congruence

classes mod 2t will be denoted by G.

Let (x, y, z) be coordinates in the euclidean 3-space. For any posi-

tive integer n, An denotes the open anchor ring

((x2 + y2)1'2 - n)2 + z2 < (1/2)2

and Bn the circle x2+y2 = n2, z = 0. It is clear that every point of

An — Bn can be uniquely written

((» + r cos p) cos a, (n + r cos p) sin a, r sin p),

which we shall abbreviate by [r, a, j8], where 0 <r < 1/2 and a, PEG.

Let/„: A„—>An be the function defined by

/„| Bn = identity;

f„[r,a,p] = [r, a - (n - l)j3, -a + np] whenever [r, a,p] G An - Bn.

Then/„ is one-one and onto (but not continuous at points of Bn) and

fn\ (An — Bn) is a homeomorphism.

The manifold M to be constructed consists of the same points as

the euclidean 3-space E. But it is topologized so that the natural

map j of £ —U"_i Bn into M, defined by j(x) =x, and every map /„

of An (as a subspace of E) into M, defined as above, are open homeo-

morphisms into. E — U"_i B„, An and An — Bn are open subsets of E

and then inherit analytic structures from the natural one on E. Since

/n| (An—Bn) is analytic for every n, we can easily have an analytic

structure on M such that j and /„ are all analytic. Hence M is an

analytic manifold.

For each gEG, we define a transformation g on M such that

g\ (M—U"=1 Bn) is a rotation of angle g and each g\Bn is a rotation

of angle ng, where rotations are taken about the z-axis. In order to

show that g is analytic with respect to the analytic structure given

above, we have only to show that f^1gfn. A„-^A„ is analytic for every

w. Let the symbol [r, a, P] stand for

((« + r cos jS) cos a, (n + r cos p) sin a, r sin /3),

where 0^r<l/2 and a, PEG. Then

(fn'gfn) [r, «, P] = [r, a + ng, p + g]

and hence our assertion follows. This proves that G acts analytically

on M.

By construction, it is clear that whenever xEBn, Gx is the cyclic

subgroup of order n. Hence we have obtained an example as desired.
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