
METRIZATIONS OF PROJECTIVE SPACES
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A two-dimensional G-space,1 in which the geodesic through two

distinct points is unique, is either homeomorphic to the plane £2 and

all geodesies are isometric to a straight line, or it is homeomorphic to

the projective plane P2 and all geodesies are isometric to the same

circle, see [l, §§10 and 31 ].

Two problems arise in either case: (1) To determine the systems

of curves (in E2 or P2) which occur as geodesies. (2) If the geodesies

are (or lie on) ordinary straight lines, can the space be imbedded in

a higher-dimensional space with the ordinary straight lines as geo-

desies? The author solved both these problems for E2, [l, Theorems

(11.2) and (14.8)], but left both open for P2 [l, Appendix (9) and

(10)]. Recently Skornyakov [2] solved the first problem for P2; he

modified the author's basic idea through replacing a summation by

an integration, and thus eliminated the singularities which the au-

thor's procedure would produce in the case of P2.

The purpose of this note is to show that a device similar to Skorn-

yakov's can be used to solve Problem (2) for Pn. Our method also

provides a much simpler solution of Problem (1). Thus we are going

to prove simultaneously:

Theorem I. Let the projective space P", w^2, be metrized as a G-

space such that the geodesies are the projective lines. Then Pn can be

imbedded in Pn+1 (and hence in Pm with m>n) such that the metric in

P" is preserved and the geodesies in Pn+1 are the projective lines.

Theorem II (of Skornyakov). In P2 let a system 2' of curves be

given such that each curve in 2' is a closed Jordan curve and two distinct

points of P2 lie on exactly one curve in 2'. Then P2 can be metrized as

a G-space such that the curves in 2' become the geodesies.

For the proof we pass to the sphere Sn or S2 as universal covering

space of P" or P2. An r-dimensional spherical sub-space of S" with

the maximal radius will be denoted as a "great Sr." We refer to the

hypotheses of the two theorems as Cases I and II respectively. In

Case I there is one great Sn in Sn+1, which we denote by Q and which
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1 Except for differentiability hypotheses, a G-space is a complete symmetric

Finsler space. For the exact definition see §8 in [l]. The results of [l] will be freely
used.
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is already metrized such that the geodesies are the great circles in Q;

we have to extend the metric from Q to 5"+1.

In Case II we obtain from 2' a system 2 of curves on S2 which are

closed Jordan curves and have the property of containing with any

point of S2 also its antipodal point, because a curve in 2' does not

decompose P2. We select any curve Q in 2 and two antipodal points

w, w' not on Q. By a topological mapping of S2 on itself we can reach

that Q and the curves in 2 through w and w' become ordinary great

circles. This normalization implies that with the ordinary two-

dimensional measure on S2 all curves in 2 have measure 0, because a

curve in 2 not through w, w' is a closed set and intersects each curve

through w and w' exactly twice.

A semi-circle Kp is an arc from p to its antipodal point p' on an

ordinary great circle in Case I and on a curve in 2 in Case II. For

X9^p, p' there is exactly one Kp which passes through x and which

we denote by Kp(x).

Q decomposes Sn, «^2, into two open hemispheres 77 and 77'. For

an arbitrary point pCH, its antipode p'CH' and X5*p, p' we put

xp = Kp(x)C\Q. The mapping x—>xp is continuous for x^p, p'. (For

the continuity properties of 2 compare the analogous arguments for

E2in [l, pp. 57, 58]). Also:

(1) x—>Xj, maps antipodes in 5n+1 on antipodes in Q and xp — x for

xCQ- In Case I a great circle not through p is mapped by x—*xp on a

great circle in Q.

In Case I the metric in Q is given. In Case II we introduce on Q the

spherical distance or any other distance that makes Q isometric to a

circle such that antipodes in the sense of Q coincide with antipodes on

S2. Let 2X be the common length (see [l, (31.2)]) of the geodesies in

Q in Case I or of Q in Case II. We put

(2) fP(x, y) = xpyp        for xy^ p, p',y ^ p, p'.

Then

(3) fp(x, y) = fp(y, x) ^ 0 with equality only for Kp(x) = Kp(y),

(4) fP(x, y) + fp (y, z) ^ fp(x, z);

here the equality holds only if Kp(x) =Kp(y) or Kp(y) =KP(z) or if

xp, yp, zp lie on a semicircle in Q and yP between xp and zp.

(5) With fp(x, y) as distance any semicircle which contains neither

p nor p' is isometric to a segment of length X, i.e., to the interval

0^/^Xwith |/i —12\ as distance.

(6) fp(x, y) = xy for x, y C Q.
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The assertions (5) and (6) follow from (1) and (2). Finally we put

fp(P, x) = fP(x, p) = fP(p', x) = /„(*, p') = 0.

Then/„(x, y) ^X for all p, x, y. For fixed x, y the function fp(x, y) is

continuous in p for p9^x, x', y, y' and is lower semi-continuous at the

latter points. Therefore, if we use on 77 a measure proportional to the

ordinary spherical measure so normalized that fiidp = l, then

(7) p(x, y) =   f fP(x, y)dp
J H

will exist as a Riemann integral. Because of (6)

(8) p(y, x) = xy for x, y EQ-

(9) Any semicircle is with p(x, y) as distance isometric to a segment

of length X, hence any great circle (or curve in 2) is isometric to a circle

of length 2X.
Let G be the great circle containing the given semicircle K. If

x, yEK then

JfP(x, y)dp =   I       fp(x, y)dp.
h J H-a

On the other hand, if piEG, <Zt>0, 2a< = 1, i = l, 2, • • • , m, then (5)

implies that K is with the distance 2a,/p,.(x, y) a segment of length

X. Since JH-ofP(x, y)dp can be interpreted as Riemann integral, (9)

follows.

p(x, y) = p(y, x) ^0 with equality only for x = y and

p(x, y) + p(y, z) ^ p(x, y)

follow from (3), (9) and (4). Finally:

(11)    p(x, y) + p(y, z) > p(x, z) if x, y, z do not lie on one great circle.

For Case I the proof is immediate: For any p not in the great S2

determined by x, y, z the points xp, yv, zp do not lie on one great circle

in Q, hence xpyP+ypzp>xpzp. Since fP(x, y)=xpyp is a continuous

function of p, when p-is not in the great S2, the assertion follows from

(4) and (7).

In both cases, no two of the points x, y, z can be antipodal because

then a great circle containing all three points would exist. Hence

xy and zy are by (1) not antipodal in Q and we can find a semicircle

in Q with end points q, q' say, which contains xv and zv as interior
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points. If p lies on Kv(q) close to y then yp = q or yP = q' and xp, zp lie

close to xv and z„, consequently there is a semicircle with yp as one

end point which contains both xp and zp, so that Xj,yp-|-ypZp>XpZp.

Since it is clear from the continuity properties of /„(x, y) that the

distance p(x, y) is topologically equivalent to the spherical distance

on Sn+l or S2, our theorems follow from (8), (9) and (11) after identi-

fying antipodal points, see [l, pp. 128, 129].

The reasons for the brevity of the present proof of Theorem II as

compared to Skornyakov's are: using a double instead of single

integral and, principally, metrizing S2 instead of a euclidean plane

obtained from P2 by cutting it along a curve C in P2 (traversed

twice). Showing that the metric satisfies Theorem II after reidenti-

fication of diametrically opposite points on C is the main difficulty in

[2]. This raises the question whether the proofs of theorems [l,

(14.8)] corresponding to Theorem I for E" and [l, (11.2)] cor-

responding to Theorem II for E2 can be similarly simplified and uni-

fied. Topological peculiarities, like asymmetry of the asymptote rela-

tion, see [l, (23.5)], seem to indicate that some complications are

unavoidable.
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