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1. Introduction. In companion papers [l; 6] recently Peaceman,

Rachford, and the author introduced a finite difference technique

called therein the alternating direction implicit method for approxi-

mating the solution of transient and permanent heat flow problems

in two space variables. The validity of the method was established

only in the case of a rectangular domain. Since then the procedure

has been tested successfully on several more complex examples [4]

without proof. The purpose of this short note is to prove in the case

of non rectangular domains that the solution of the alternating direc-

tion method for the parabolic problem converges to the solution of

the differential equation as the increments of the independent vari-

ables diminish in a proper manner, that the iterative adaptation for

the elliptic problem converges to the solution of the Laplace difference

equation, and to give an efficient choice of the parameter sequence

involved in this iteration.

2. Parabolic problem. Let D be an open, connected set in the plane

bounded by a curve C made up of closed polygons with sides parallel

to the coordinate axes. Assume, moreover, that there exists a sequence

{Ax0}, Axa—*0, such that, for each a, C coincides with a polygon

through lattice points (iAxa,jAxa) with sides parallel to the axes. The

notation below is the same as in [l]. Consider the boundary value

problem
d2u      d2u     du
— H-= —, (x,y)ED,0<t<T,
dx2      by2      dt

(2.1) y
u(x, y, 0) = f(x, y), (x, y)ED,

<x, y, t) = g(x, y, t),        (x, y)EC, 0<t<T.

The alternating direction implicit difference analogue of (2.1) is the

following:

(2.2) AxWi,j>2n+i + AyWi,j,in = (wi,,;2n+i — Wi,j,2n)/At, (iAx, jAx) E T>,

2 2

AxWij,2n+i + AvWi,j,2n+2 = (wi,ji2n+i — Wi,i,2n+i)/At, (iAx,jAx) ED,

Wi,j,o = Ui,j,0, (iAx, jAx) E D, w,-,,-,OT = «,•,,,*,, (iAx, jAx) G C.
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The advantages of this system are discussed in [6].

We shall perform a stability analysis on (2.2) to enable the applica-

tion of the convergence theorem of [2], For this purpose it is sufficient

to allow Wi,j,m to vanish on C. Let A be a matrix corresponding to

the operator A2X, B one corresponding to A2,, and wm the column vector

with components Wij,m. Then, (2.2) can be written as:

(2.3) ,w - (b - 1)-\A +1)(a- ±)"(b + i)„,„.

As A and B commute and are symmetric, it is easy to see that

(2.4) U.(b-1)"(a+1)(a-1)-'(b + ±)

is symmetric. For, if P and Q are symmetric, PQ is symmetric if and

only if PQ = QP, and PQ = QP if and only if PQ-l = Q~lP.
Stability of (2.2) is implied by having all of the eigenvalues of M

less than one in magnitude. First, in the case D is a square, the eigen-

functions are known to be

(2.5) <ppq = sin irpXi sin irqyi,

and the eigenvalues to be (M<ppq = ppqd)pq)

1 - X sin2 (icpAx/2)  1 - X sin2 (irqAx/2)

/ij" ~ l + Xsin2(7r/>Ax/2)  1 + X sin2 (irqAx/2) '

where \ = 4At/(Ax)2. Thus, for any X>0, (2.2) is stable for a square

region. The general case then follows from [5, p. 164, Theorem 3] by

enclosing C in a square and removing points from the lattice one by

one until the desired region is obtained.

Assume that the initial conditions and boundary condition are such

that (2.1) possesses in the closed region (x, y)£7>WC, 0<t<T, a

solution u with bounded uxxxx, uyyyy, uxxt, uyyt and utt- Then, Theorem

2 of [2] may be applied to yield the following result:

Theorem 1. Under the conditions on D and u stated above, the linearly

interpolated solution w(x, y, t) of (2.2) converges in the mean to u(x, y, t)

in 7>x[0, T]. Moreover, the L2 norm of u(x, y, t)—w(x, y, t) is

0((Ax)2 + (At)2).

If, in addition to the above hypotheses, g(x, y, t) vanishes identi-

cally, then the argument of [3 ] can obviously be adapted to yield a

convergence theorem in the L2 topology for variable time steps. In

fact, it is easy to see that the error is G(Ax)2 if the time steps satisfy

the relation
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(2.7) (A^=*+^

where At„ = tn+i — tn, h = 0.

3. Elliptic problem. Consider in a region D as described in §2 the

first boundary value problem for the potential equation:

d2u      d2u
— + — =0, (x,y)ED,
dx2      6V

(3.1)
u(x, y) = g(x, y), (x, y) EC

It is well known [5] that under quite general conditions the solution

of the Laplace difference equation

AxWi,,- + AvWi,i = 0, (iAx, jAx) E D,

Wi,i = g>,i, (iAx,jAx)EC,

converges to u as Ax—>0. We shall not be interested here in this

theoretical problem but in the practical problem of obtaining the

solution of the linear equations in (3.2) for some fixed Ax.

Let a/y' be an arbitrary lattice function agreeing with g,/ on C,

and define wff iteratively as follows:

(Sn+l) (Sn)

AxWij       + AyWn     = —-> (iAx, jAx) ED
an

. . (!n+2) (2»+l)

(6.6) 2      (2n+l) 2     (2n+2) Wij —   Wij
Axwn       + AyWn        = -'        (i&x,jAy)ED,

a„

wn    = gijt (tAx, jAx) E C.

Now, the eigenf unctions occurring in the expansion of Wij — w2" are

the same as those appearing in the treatment of the parabolic case

for At = a„. Thus, for any a„>0 each two-step iteration reduces the

magnitude of the coefficient of each eigenfunction. While this implies

the convergence of aiy° to w.-y for fixed an = a, this choice of the se-

quence of parameters an is not the most efficient.

It was found [6] that for a square region of side a that taking a

cycle of iterations with

4a„        (1 - R\2n  /        irAx
(3.4)        X„ = -—— = I ■-)    / sin2-; n = 0, • • ■ , m,

(Ax)2      \1 + R/   I 2a

where Am.-i>l, Xm<l, reduces each coefficient by a factor of R at
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least. Thus, to reduce each coefficient by a factor of exp (-Q) re-

quires at most Q/ — log R cycles. Hence, the number of calculations

for this reduction is [6]

a2 2a     l 1 - R
(3.5) ^ = 9Q-—log —/ logic log——•

(Ax)2 irAx/ l + R

As a function of R, W is minimized for R around 0.4, and for this

value of R,

(3.6) W < l2Qa2 log —— / (Ax)2.
■kAxi

Experimental evidence indicates that the constant 12 is high and

should be about six.

One admissible sequence an for a general region is that sequence

(3.4) for the smallest square containing D. If a is the side length of

this square and N(Ax) is the number of interior lattice points of D

corresponding to increment Ax, then the number of calculations re-

quired to reduce the coefficients of the error eigenfunctions by a fac-

tor of exp (— Q) is

(3.7) W < l2QN(Ax) log —— •
TAX

It is undoubtedly not worth the effort in a practical problem to at-

tempt to obtain a better sequence of iteration parameters.
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