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1. Introduction. Let 5 and T be metric spaces and let d and d'

denote the distance functions in 5 and T, respectively. Let / be a

function on S1 to T. In [l], Bledsoe defined / to be neighborly at the

point x of S if and only if for every «>0 there exists a nonempty open

sphere U of 5 such that, for every y in U, d(x, y) +d'(f(x), f(y)) <e.

If / is neighborly at every point of S, then we say that/ is neighborly

over S, or simply that / is neighborly. The concept of a neighborly

function is a generalization of the concept of a continuous function,

since the open sphere U is not required to contain the point x.

Bledsoe proved [l] that if g is a function which is the limit of a

sequence of neighborly functions, then the set of points of discon-

tinuity of g is of the first category. Obviously, then, this conclusion

holds if g itself is neighborly. This result suggests that there might

be a close relationship between neighborly functions and derivatives,

and that the concept of a neighborly function might be helpful in

connection with the unsolved problem of finding an intrinsic charac-

terization of those functions which are derivatives. The purpose of

this note is to prove the theorem below, which offers some prospect

of being useful in characterizing derivatives.1

Although the theorem was suggested by Bledsoe's results, it is not

necessary to be familiar with his paper in order to understand this

note.

2. Whenever we speak of a function of a real variable we shall

mean a function whose domain of definition is the set of all real num-

bers. We shall need the following lemma.

Lemma. Iff is a Baire class I real-valued function of a real variable,

s<t, and P is any nonempty closed subset of the reals, then there is an

open interval J such that JP is nonempty and either JP CEx(/(x) > s)

or JPCEx(f(x)<t).

Proof. By a theorem due to Lebesgue [5, p. 128], the proof of
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which is straightforward, each of the sets Ai=Pr\Ex(f(x)>s) and

A2=Pr\Ex(f(x)<t) is a countable union of closed sets. Clearly

P = AiVJA2. Since P is a complete metric space, it follows by Baire's

Density Theorem that either Ai or A2 contains a nonempty open

subset of P. Hence the lemma follows.

Theorem. If F is any real-valued function of a real variable whose

derivative F' is defined everywhere and is Riemann integrable over every

finite interval, then F' is neighborly.

Proof. Let F'(x)=f(x). The theorem is proved by assuming that

/is not neighborly at Xi and obtaining a contradiction. There is clearly

no loss of generality in assuming/(xi) =0. From the definition of a

neighborly function and the assumption that/is not neighborly at Xi,

it follows that there is a closed interval 7i which contains Xi in its

interior, and a positive number e, such that at every point x of con-

tinuity of / lying in 7i, |/(x) | *£«. We assume, without loss of general-

ity, that |/(x)| ^3 for every point of continuity in 7i, since this can

be achieved by multiplying by the constant 3/e.

Since/ is a derivative it is of Baire class I, and hence the set B of

points of continuity of/ is dense. Hence we can choose a closed inter-

val 7, contained in 7i and containing Xi in its interior, such that the

end points of 7 are points of B. Let M be the set of those real num-

bers x for which |/(x)| ^2. Let D be the interior of M and let P

= I — D. If x is in BI, then |/(x) | ^3 and hence x is in an open interval

at every point y of which, |/(y)| ^2. Hence BIED. Clearly P is a

closed subset of the interior of 7. Also P is nonempty since Xi in is P.

Let K = Ex(f(x) > — 1) and Q = Ex(f(x) <1). By our lemma there

is an open subinterval J of I such that JP is nonempty and either

JPEK or JPEQ- By changing the sign off, if necessary, we see that

there is no loss of generality in assuming JP EK.

Since/ is a derivative it satisfies the Darboux condition: given a

number u such that f(b) <u<f(c), there exists a number d between

b and c such that f(d)=u [2, p. 117].
From the fact that J = JP\JJD we have for each x in / either

f(x) > — 1 or |/(x) | Si 2. Hence there is no x in 7" for which f(x) = — 1,

and therefore by the Darboux principle there is no x in J for which

/(x) ^ — 2. Consequently for every x in JD, /(x)^2. Since BIED

and 7C7 it follows that BJEJD- Since/ is Riemann integrable, the

set BJ, and hence its superset JD, have relative measure 1 in /.

Thus f(x) S: 2 over a set of relative measure 1 in J. Since JP is non-

empty, there is a point p in J for which/(p) <2. Furthermore if x is

in J and x>p then
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F(x) -F(p) =  f'f(t)dt = 2(x-p)

[4, Theorem 11.83]. Hence we have

F(x) - F(p)
ftp) = F'(p) = lim -^-¥L ^ 2.

i-.j,+        x — p

This contradicts the assertion that/(£)<2, and completes the proof

of the theorem.

3. Remarks. The condition in the theorem that F' be Riemann

integrable can not be dropped. Hobson [3, pp. 412-421] describes

a function F which has a derivative F' which is finite everywhere,

but which has the following properties: both the set of points of dis-

continuity of F', and also the set of points of continuity, are every-

where dense, and at every point x of continuity of F', F'(x) =0. In

view of these properties it is easy to show that F' is not neighborly.

The converse of the theorem is not true. If/(x)=0 for x^O and

f(x) =1 for x>0, then /is Riemann integrable and neighborly but is

not a derivative.
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