## MATRIX SUMMABILITY IN F-FIELDS

## J. B. ROBERTS

In this paper we consider some aspects of the theory of summability in fields which are complete with respect to a non-Archimedean valuation. We call such fields *F-fields*. In particular we give necessary and sufficient conditions in order that certain linear summability methods preserve convergence and limits.

1. **Definitions.** The infinite matrix  $A = (a_{ij})$  will be associated with the

$$\left\{ \begin{array}{l} \text{sequence to sequence} \\ \text{series to sequence} \\ \text{series to series} \end{array} \right\} \text{ transformation} \left\{ \begin{array}{l} \left[u_n\right] \to \left[u_{n'}\right] \\ \sum\limits_{i=0}^{\infty} \ u_i \to \left[u_{n'}\right] \\ \sum\limits_{i=0}^{\infty} \ u_i \to \sum\limits_{i=0}^{\infty} \ u_i' \end{array} \right\}$$

when  $u_n = \sum_{i=0}^{\infty} a_{in}u_i$  for all  $n \ge 0$ .

If the sequence to sequence transformation associated with A is such that  $[u'_n]$  exists and converges whenever  $[u_n]$  converges we call A a K matrix. If  $[u'_n]$  exists and converges to  $\lim_{n\to\infty} u_n$  whenever this limit exists we call A a T matrix. Similar names for the series to sequence and the series to series matrices are  $K_1$ ,  $K_1$  and  $K_2$ ,  $K_2$  matrices respectively. (Our  $K_1$ ,  $K_2$ ,  $K_3$  matrices are sometimes referred to as  $K_3$ ,  $K_4$ ,  $K_5$  matrices respectively. See  $K_5$ .)

- 2. The main theorem. For ease in stating the main theorem we set forth three propositions. We use |a| for the valuation of a in the F-field under consideration.
  - (i)  $|a_{ij}| < H$  for  $i, j \ge 0$  and some real H;
  - (ii)  $\sum_{i=0}^{\infty} a_{ij}$  exists for all j and tends to  $\gamma$  as  $j \to \infty$ ;
  - (iii) for  $i \ge 0$ ,  $\lim_{j\to\infty} a_{ij}$  exists and equals  $\alpha_i$ .

THEOREM. The matrix  $A = (a_{ij})$  is a:

- (1) K matrix if and only if (i), (ii), (iii);
- (2) T matrix if and only if (i), (ii), (iii) and  $\gamma = 1$  and all  $\alpha_i = 0$ ;
- (3) K<sub>1</sub> matrix if and only if (i), (iii);
- (4)  $T_1$  matrix if and only if (i), (iii) and all  $\alpha_i = 1$ ;
- (5)  $K_2$  matrix if and only if (i) and  $\sum_{i=0}^{\infty} a_{ij}$  exists for  $i \ge 0$ ;
- (6)  $T_2$  matrix if and only if (i) and  $\sum_{j=0}^{\infty} a_{ij} = 1$  for  $i \ge 0$ .

Received by the editors July 5, 1956.

Furthermore if A is a:

(a) K matrix then 
$$u'_n \to \gamma u + \sum_{i=0}^{\infty} \alpha_i(u_i - u);$$
  
(b)  $K_1$  matrix then  $u'_n \to \alpha_0 \sum_{i=0}^{\infty} u_i + \sum_{i=0}^{\infty} ((\alpha_{i+1} - \alpha_i) \sum_{j=i+1}^{\infty} u_j).$ 

Except for the proofs of the necessity of (i) in each of (1)-(6) the proofs are not difficult and are quite similar to the proofs in the complex number field. A proof of (2) was recently given for p-adic number fields. (See [1].) In §4 we will prove a lemma which at once furnishes us with a proof of the necessity of (i) in all of the six parts of the theorem. For complete proofs of all parts of the theorem see [5]. In the next section we introduce some concepts used in the proof of the lemma mentioned above.

- 3. F-Banach spaces. A vector space S over the F-field F, with valuation  $|\cdot|$ , is an F-Banach space if there exists a real valued function | | · | satisfying
  - (i) ||x|| exists and is  $\ge 0$  for all  $x \in S$  and ||x|| = 0 only for x = 0;
  - (ii)  $||x+y|| \le ||x|| + ||y||$ ;
  - (iii)  $||cx|| = |c| \cdot ||x||$  for all  $c \in F$  and  $x \in S$ ;
  - (iv) S is complete with respect to  $\|\cdot\|$ .

Following Banach |2| we denote the collections of bounded sequences and null sequences by (m) and  $(c_0)$  respectively. Defining ||x||for  $x = [x_n] \in (m)$  to be  $\sup_n |x_n|$  we see that both (m) and  $(c_0)$  are F-Banach spaces.

Also the following analogue of the Banach-Steinhaus theorem is valid.

Let  $[U_{\alpha}]$  be a family of bounded linear operators defined on an F-Banach space  $\tilde{M}$  to an F-Banach space  $\tilde{N}$  and let  $M_{U\alpha}$  be the bound of  $U_{\alpha}$ . Then if  $\sup_{\alpha} \|U_{\alpha}(x)\|$  is finite for all  $x \in \tilde{M}$  the set  $[M_{U_{\alpha}}]$  is bounded.

For proofs and further discussion of these facts see [5, Chapter 5].

## 4. The key lemma.

LEMMA. If for arbitrary  $[x_n] \in (c_0)$ ,  $x'_n = \sum_{i=0}^{\infty} a_{in}x_i$  exists for all  $n \ge 0$  and  $[x_n] \in (m)$  then there exists a real number H such that  $|a_{ij}| < H$  for  $i, j \ge 0$ .

PROOF. (a) We first show that for each  $j \ge 0$ ,  $\sup_{i} |a_{ij}|$  exists. Assume the contrary. Let  $[x_n] \in (c_0)$  with no  $x_n = 0$ . Then there exists a strictly increasing sequence of positive integers  $[i_k]$  such that  $|a_{i_k j_0}| > |x_k|^{-1}$  for  $\underline{k} \ge 0$ . Define  $y_{i_k} = x_k$ ,  $y_i = 0$  otherwise. Then  $[y_n] \in (c_0)$  and so  $\sum_{k=0}^{\infty} a_{i_k j_0} x_k$  does not exist. This contradiction proves  $\sup_{i} |a_{ij}|$  exists for  $j \ge 0$ .

(b) Let  $[x_n] \in (c_0)$ . Then by hypothesis  $\sum_{i=0}^{\infty} a_{in} x_i$  exists for  $n \ge 0$ . Let  $U_n(x) = \sum_{i=0}^{\infty} a_{in} x_i$ . This  $U_n$  is a homogeneous linear operator on  $(c_0)$  to F. By (a),  $\sup_i |a_{in}|$  exists and therefore  $|U_n(x)| = |\sum_{i=0}^{\infty} a_{in} x_i| \le \sup_i |a_{in} x_i| \le M_n ||x||$ . Hence  $U_n$  is continuous (see [4]).

We show next that  $M_n = M_{U_n}$ , where  $M_{U_n}$  is the bound of  $U_n$ . Clearly  $M_n \ge M_{U_n}$ . Suppose  $M_n > M_{U_n}$ . Let  $M_{U_n} = M_n - d$ . Choose  $i_0$  such that  $|a_{i_0n}| > M_n - d$ . Define the sequence  $[y_n]$  so that  $y_{i_0} = 1$ ,  $y_i = 0$  otherwise. Then  $|U_n(y)| = |a_{i_0n}| > M_n - d = M_{U_n}$ . But by definition of  $M_{U_n}$ ,  $|U_n(y)| \le M_{U_n} ||y|| = M_{U_n}$ . This contradiction shows  $M_n = M_{U_n}$ .

By hypothesis if  $x = [x_n]$  is in  $(c_0)$  then  $[U_n(x)]$  is in (m). Hence  $\sup_n |U_n(x)| < \infty$ . Since the  $U_n$  are linear operators on  $(c_0)$  to F with  $\sup_n |U_n(x)| < \infty$  for all  $x \in (c_0)$  we conclude from the Banach-Steinhaus theorem that  $[M_{U_n}] \in (m)$ . Hence if  $M_{U_n} < H$  for all  $n \ge 0$ ,  $\sup_j \sup_i |a_{ij}| < \sup_j M_j = \sup_j M_{U_j} < H$  and the lemma is proved.

## REFERENCES

- 1. R. V. Andree and G. M. Petersen, Matrix methods of summation, regular for p-adic valuations, Proc. Amer. Math. Soc. vol. 7 (1956) pp. 250-253.
  - 2. S. Banach, Théorie des operations linéaires, Warsaw, 1932.
  - 3. R. G. Cooke, Infinite matrices and sequence spaces, Macmillan, 1950.
- 4. A. F. Monna, Sur les espaces linéaires normes III, Neder. Akad. Wetensch. XLIX vol. 10 (1946).
- 5. J. B. Roberts, Summability methods in valuation fields, University of Minnesota doctoral thesis, 1955.

REED COLLEGE