COMPLETE ORTHONORMAL SEQUENCES OF FUNCTIONS UNIFORMLY SMALL ON A SUBSET

J. A. HUMMEL¹

Given a region G in the complex plane having a nonvoid interior and two complex valued functions, f and g, defined in G, denote

$$(f, g)_G = \int\!\!\int_G f\bar{g}dxdy, \qquad ||f||_G = (f, f)_G^{1/2}.$$

Let D be a bounded plane domain and let $L^2(D)$ be the Hilbert space of all analytic functions in D satisfying $||f||_D < \infty$. It can easily be shown that there exists a continuous, real valued function $m_D(z)$ in D such that for any f in $L^2(D)$ and any z in D

$$|f(z)| \leq m_D(z)||f||_D,$$

(see, for example, [1, p. 5]).

Let ϕ_n be any complete orthonormal sequence in $L^2(D)$. Then from (1) follows

(2)
$$\sum_{n=1}^{\infty} |\phi_n(z)|^2 \leq [m_D(z)]^2,$$

and hence the convergence of the expansion for the Bergman reproducing kernel

(3)
$$K_D(z, w) = \sum_{n=1}^{\infty} \phi_n(z) \left[\phi_n(w)\right]^{-1}$$

where $[\phi_n(w)]^-$ indicates the complex conjugate of $[\phi_n(w)]$, (cf. [1, pp. 6 and 9]).

Let K be a given compact subset of D. Then we might wish to try to approximate the kernel function in K by using a finite series. Because of (2) and the fact that $m_D(z)$ is continuous, it is clear that given an $\epsilon > 0$ and a complete orthonormal sequence $\{\phi_n\}$, there exists an $N = N(D, K, \epsilon, \{\phi_n\})$ such that $m \ge N$ and $z, w \in K$ implies

$$\left| K_D(z, w) - \sum_{n=1}^m \phi_n(z) \left[\phi_n(w) \right]^{-} \right| < \epsilon.$$

It might be asked whether or not N can be chosen independently of

Presented to the Society, August 24, 1956; received by the editors September 10, 1956.

¹ The writer holds a National Science Foundation postdoctoral fellowship.

 $\{\phi_n\}$, i.e., if we can find an upper bound to the number of terms required in the series of (3) to approximate $K_D(z, w)$ in K, independently of which orthonormal sequence $\{\phi_n\}$ is used.

In this note, we show that such an upper bound cannot exist. To do this, we first prove a result which the writer and several of those he has shown it to consider quite remarkable. If K is a compact subset of D, and $\epsilon > 0$ is given, then there exists a complete orthonormal sequence $\{\phi_n\}$ in $L^2(D)$ such that for all $z \in K$ and all n, $|\phi_n(z)| < \epsilon$.

The method of proof used is of some interest since it is one of relatively few examples of the use of doubly orthogonal functions.

THEOREM 1. Let D be a bounded domain in the complex plane, $L^2(D)$ the Hilbert space of all analytic functions in D for which $||f||_D < \infty$, and K a compact subset of D. Let $\epsilon > 0$ be given. Then there exists a complete orthonormal sequence $\{\phi_n(z)\}$ in $L^2(D)$ such that $||\phi_n||_K < \epsilon$ for all n.

PROOF. We may assume that K is the closure of a domain contained in D, for if not we merely enlarge K to K' satisfying this property.

Under these hypotheses we have the existence of a doubly orthogonal sequence of functions $\{\psi_n(z)\}$ (cf. [1, pp. 14-17]), that is, a complete orthonormal sequence in $L^2(D)$ satisfying

$$(4) \qquad (\psi_n, \psi_m)_K = \lambda_n \delta_{nm}, \qquad \lambda_n \searrow 0.$$

Indeed, $\sum \lambda_n < \infty$, but we do not need this here. Since $\lambda_n \rightarrow 0$, we have

$$\frac{1}{m} \sum_{n=1}^{m} \lambda_n \to 0 \text{ as } m \to \infty.$$

Given $\epsilon > 0$, choose N such that

(5)
$$\frac{1}{2^N} \sum_{n=1}^{2^N} \lambda_n < \epsilon^2, \qquad \lambda_n < \epsilon^2 \text{ for } n > 2^N.$$

Let $E_N = (\epsilon_{ij})$ be a $2^N \times 2^N$ matrix consisting entirely of elements $\epsilon_{ij} = \pm 1$ such that any two rows are orthogonal. The existence of such matrices is of course well known. One is easily constructed inductively, setting

$$E_1 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \qquad E_{n+1} = \begin{pmatrix} E_n & E_n \\ E_n & -E_n \end{pmatrix}.$$

$$\phi_{i} = (1/2^{N})^{1/2} \sum_{j=1}^{2^{N}} \epsilon_{ij} \psi_{j}, \qquad i = 1, 2, \dots, 2^{N}.$$

$$= \psi_{i}, \qquad i > 2^{N}.$$

This set of functions is clearly orthonormal and complete in $L^2(D)$. From (4) and (5) we see that the desired conclusion, $\|\phi_n\|_K < \epsilon$, holds for $n > 2^N$, while if $n \le 2^N$, then

$$\|\phi_n\|_K^2 = \frac{1}{2^N} \sum_{j=1}^{2^N} \lambda_j < \epsilon^2.$$

COROLLARY 1. If K is a compact subset of the bounded plane domain D and if $\epsilon > 0$ is given, then there exists a complete orthonormal sequence $\{\phi_n(z)\}$ in $L^2(D)$ such that for all $z \in K$ and all n

$$|\phi_n(z)| < \epsilon.$$

PROOF. Let G be a domain containing K and such that $\overline{G} \subset D$. Let

$$m = \max_{z \in K} m_G(z)$$

where $m_G(z)$ is defined as in (1).

From Theorem 1, construct an orthonormal sequence $\{\phi_n\}$ in $L^2(D)$ such that

$$\|\phi_n\|_G < \frac{\epsilon}{m}$$

for all n. Then because of (1), for any $z \in K$ and any n

$$|\phi_n(z)| \leq m_G(z) ||\phi_n||_G < \epsilon.$$

COROLLARY 2. Let K be a compact subset of the bounded plane domain D. Let $0 < \epsilon < \max K_D(z, z)/2$ for $z \in K$. Then there exists no integer N such that

$$\left| K_{\mathcal{D}}(z, w) - \sum_{n=1}^{N} \phi_{n}(z) \left[\phi_{n}(w) \right]^{-} \right| < \epsilon$$

for all z, $w \in K$ and any complete orthonormal sequence $\{\phi_n\}$ in $L^2(D)$.

PROOF. Let N be given. Choose z_0 in K such that $K_D(z_0, z_0) > 2\epsilon$. From Corollary 1, choose a complete orthonormal sequence $\{\phi_n\}$ such that $|\phi_n(z_0)|^2 < \epsilon/N$ for all n. But then

$$\left| K_D(z_0, z_0) - \sum_{n=1}^N \phi_n(z_0) \left[\phi_n(z_0) \right]^{-} \right| \geq K_D(z_0, z_0) - \sum_{n=1}^N |\phi_n(z_0)|^2 > \epsilon.$$

Finally we note that Theorem 1 is not confined to the space $L^2(D)$. For the proof we require only the existence of a doubly orthogonal sequence ψ_n with $\lambda_n \to 0$. Thus, we have the result:

THEOREM 2. Let H_1 and H_2 be two complete, separable Hilbert spaces and let $J: H_2 \rightarrow H_1$ be a linear mapping of H_2 into H_1 . Suppose that J is completely continuous. Then, given $\epsilon > 0$, there exists in H_2 a complete orthonormal sequence $\{\phi_n\}$ such that $\|J\phi_n\|_1 < \epsilon$ for all n.

PROOF. It is easily proved that if J is completely continuous, there exists a doubly orthogonal sequence $\{\psi_n\}$, complete in H_2 , and satisfying

$$(\psi_n, \psi_m)_2 = \delta_{nm},$$

$$(J\psi_n, J\psi_m)_1 = \lambda_n \delta_{nm}, \qquad \lambda_n \searrow 0.$$

The proof of this theorem then proceeds exactly as that of Theorem 1.

BIBLIOGRAPHY

1. S. Bergman, *The kernel function and conformal mapping*, Math. Surveys, No. 5, American Mathematical Society, New York, 1950.

STANFORD UNIVERSITY