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Given a region G in the complex plane having a nonvoid interior

and two complex valued functions, / and g, defined in G, denote

(/. g)a = Jj fgdxdy,        ll/H a = (/, f)T.

Let D be a bounded plane domain and let L2(D) be the Hilbert space

of all analytic functions in D satisfying ||/||z>< °°. It can easily be

shown that there exists a continuous, real valued function mD(z) inD

such that for any/ in L2(D) and any z in D

(1) \M\   £ mD(z)\\f\\D,

(see, for example, [l, p. 5]).

Let <pn be any complete orthonormal sequence in L2(D). Then from

(1) follows

(2) EI*.(«)NM«)]',
n—l

and hence the convergence of the expansion for the Bergman repro-

ducing kernel

00

(3) KD(Z,W)   =   22 <t>n(z)[<bn(w)]-
n—l

where [<pn(w)]~ indicates the complex conjugate of [$„(w)], (cf.

[l, pp. 6 and 9]).

Let K be a given compact subset of D. Then we might wish to try

to approximate the kernel function in K by using a finite series. Be-

cause of (2) and the fact that mr>(z) is continuous, it is clear that given

an e>0 and a complete orthonormal sequence {<£„}, there exists an

N = N(D, K, £, {</>„}) such that m^N and z, wEK implies

m

KD(Z, W)  -   E <Pn(z)[4>n(w)]-    < €.
n-1

It might be asked whether or not N can be chosen independently of
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{(pn}, i.e., if we can find an upper bound to the number of terms re-

quired in the series of (3) to approximate KD(z, w) in K, independ-

ently of which orthonormal sequence {</>„} is used.

In this note, we show that such an upper bound cannot exist. To do

this, we first prove a result which the writer and several of those he

has shown it to consider quite remarkable. If K is a compact subset

of D, and e>0 is given, then there exists a complete orthonormal

sequence {</>„} in L2(D) such that for all zEK and all n, \(j>„(z)\ <e.

The method of proof used is of some interest since it is one of rela-

tively few examples of the use of doubly orthogonal functions.

Theorem 1. Let D be a bounded domain in the complex plane, L2(D)

the Hilbert space of all analytic functions in D for which ||/||o < °°, and

K a compact subset of D. Let e>0 be given. Then there exists a complete

orthonormal sequence {(pn(z)} in L2(D) such that ||0n||ir<e/or all n.

Proof. We may assume that K is the closure of a domain con-

tained in D, for if not we merely enlarge K to K' satisfying this prop-

erty.

Under these hypotheses we have the existence of a doubly orthog-

onal sequence of functions {^»(z)} (cf. [l, pp. 14-17]), that is, a

complete orthonormal sequence in L2(D) satisfying

(4) (^„, J/m)K = Xn8„m, X„ \ 0.

Indeed, 2~I*»< °°, but we do not need this here. Since Xn—>0, we have

1    m

— ^ X„ —> 0 as »i —> oo.
m „_!

Given e>0, choose N such that

1      2*

(5) — X X» < «2. X. < e2 for n > 2".
£     n—l

Let EN = (eij) be a 2^X2^ matrix consisting entirely of elements

€ij= +1 such that any two rows are orthogonal. The existence of

such matrices is of course well known. One is easily constructed in-

ductively, setting

£l = (i_i)<     £"+1 = U -e}

Set
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2N

<Pi = (1/2")1/2 E «&h » = 1. 2, • • • , 2W.
y-i

- ** t > 2*.

This set of functions is clearly orthonormal and complete in L2(D).

From (4) and (5) we see that the desired conclusion, ||<£»||k<€, holds

for n>2N, while if ra^2Ar, then

2        1   2"

IWU = - E X; < A/    y-i

Corollary 1. If K is a compact subset of the bounded plane domain

D and if e>0 is given, then there exists a complete orthonormal sequence

{<pn(z)} in L2(D) such that for all zEK and all ra

|*»0O|   <*
Proof. Let G be a domain containing K and such that GED. Let

(6) m = max mq(z)

where mo(z) is defined as in (1).

From Theorem 1, construct an orthonormal sequence {</>„} in

L2(D) such that

IWU < -
m

for all ra. Then because of (1), for any zEK and any ra

| <Pn(z) |     g  W<j(z)||^>n||o  <  £•

Corollary 2. Let K be a compact subset of the bounded plane domain

D. Let 0 <€ < max K~d(z, z)/2 for zEK- Then there exists no integer N

such that

N

KD(z, w) - E *»(*) [*.(«») 1"   < «
n-l

/or a// z, wEK and any complete orthonormal sequence {<£„} in L2(D).

Proof. Let N be given. Choose z0 in K such that 7CD(z0, z0)>2e.

From Corollary 1, choose a complete orthonormal sequence {<£„}

such that |0„(zo)12<6/7V for all ra. But then

N N

KD(zo, z0) — E 4>n(zo)[<t>*(zo)]~   ?= 7Td(z0, z0) — E I 4>»(zo) |2 > *■
n—l n—l
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Finally we note that Theorem 1 is not confined to the space L2(D).

For the proof we require only the existence of a doubly orthogonal

sequence \pn with X„—>0. Thus, we have the result:

Theorem 2. Let Hi and Ht be two complete, separable Hilbert spaces

and let J: H2—>Hi be a linear mapping of H2 into Hi. Suppose that J is

completely continuous. Then, given e>0, there exists in H2 a complete

orthonormal sequence {<pn} such that || J(j>n\\i<e for all n.

Proof. It is easily proved that if J is completely continuous, there

exists a doubly orthogonal sequence {\f/n}, complete in H2, and satis-

fying

('Pn, tm)i  =   S„m,

(Jypn, J^m) 1  =   XnSnm, Xn \ 0.

The proof of this theorem then proceeds exactly as that of Theorem 1.
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