with mild restrictions on ϕ ensures that u / v satisfies the maximum principle; and this is the property which underlies the present analysis.

Bibliography

1. P. Hartman and A. Wintner, On a comparison theorem for self-adjoint partial differential equations, Proc. Amer. Math. Soc. vol. 6 (1955).
2. H. Bateman, Partial differential equations of mathematical physics, New York, Dover, 1944, pp. 37, 135-138.
3. De la Vallee Poussin, Cours d'analyse, vol. I, New York, Dover, 1956, p. 118.

University of California, Los Angeles

A NOTE ON LINEAR ORDINARY DIFFERENTIAL EQUATIONS

STEPHEN P. DILIBERTO ${ }^{1}$

Let

$$
\begin{equation*}
\frac{d x}{d t}=A(t) x, \tag{1}
\end{equation*}
$$

where x is an n-column vector

$$
\left(\begin{array}{l}
x_{1} \\
: \\
\cdot \\
x_{n}
\end{array}\right)
$$

and $A=\left(a_{i j}(t)\right)$ where $a_{i j}(t)$ are continuous real valued functions of time $(-\infty<t<+\infty)$. Let $y^{1}(t), \cdots, y^{n}(t)$ be any n-linearly independent solutions of (1) defined for all t. Let $B^{1}(t), \cdots, B^{n}(t)$ be the n normal-orthogonal vectors obtained from the set $\left\{y^{i}\right\}$ by the GramSchmidt orthogonalization process. Let $B(t)$ be the orthogonal matrix whose j th column is $B^{i}(t)$, and introduce a new variable u (an n column vector) defined by

$$
\begin{equation*}
x=B(t) u . \tag{2}
\end{equation*}
$$

u satisfies the linear differential equation
Received by the editors August 23, 1956.
${ }^{1}$ The author is indebted to the Office of Scientific Research for a research grant 1954-1955, during which time this work was undertaken.

$$
\begin{equation*}
\frac{d u}{d t}=C(t) u \tag{3}
\end{equation*}
$$

where C is related to A and B by

$$
\begin{equation*}
C(t)=B^{-1}(t) A(t) B(t)-B^{-1}(t) \frac{d}{d t} B(t) . \tag{4}
\end{equation*}
$$

We have shown ${ }^{2}$ that

$$
c_{i j}(t)=0
$$

if $i>j$.
We propose to show that the $c_{i j}$ satisfies certain simple formulas for $i \leqq j$, and these will imply that the $c_{i j}$ are bounded if the $a_{i j}$ are bounded. Our first proof ${ }^{2}$ of this fact was unsatisfactory.

We reemploy the convention that if B is an n-square matrix, B_{i} will denote the i th row of B and also the row vector determined by the i th row of $B ; B^{j}$ will denote the j th column of B and also the column vector determined by the j th column of B. If E, F, and G are three matrices (n-square) and $E=F G$, then $E_{i}=F_{i} G$ and $E^{i}=F G^{i}$, where in the latter two formulas one has the appropriate vector-matrix and matrix-vector multiplication. E_{i}^{j} will denote the $(i-j)$ th element of E, and if $E=F G$, then $E_{i}^{j}=F_{i} G^{j}$ where the right side is scalar multiplication (of a row vector times a column vector). If $E=\left(e_{i j}\right)$, then $E_{i}^{j}=e_{i j}$.

From (4) one finds

$$
\begin{equation*}
c_{i j}=B_{i}^{-1} A B^{j}-B_{i}^{-1}\left(\frac{d B}{d t}\right)^{\prime} \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
c_{i j}={B^{\prime} A B^{i}-B^{\prime i}\left(\frac{d B^{j}}{d t}\right), ~, ~}_{\text {and }} \tag{6}
\end{equation*}
$$

this last following from the fact the B is orthogonal, i.e. B^{\prime}, the transpose of B, satisfies $B^{\prime}=B^{-1}$ and therefore $\left(B^{\prime}\right)_{i}=B_{i}^{-1}$, but $\left(B^{\prime}\right)_{i}=\left(B^{i}\right)^{\prime}$ or $B^{\prime i}$ (in our notation). From $\delta_{i j}=B_{i}^{-1} B^{j}=B^{\prime i} B^{i}$, one finds on differentiating that

$$
\begin{equation*}
\left(\frac{d}{d t} B^{\prime i}\right) B^{i}=-B^{\prime i}\left(\frac{d}{d t} B^{j}\right)=-\left(\frac{d B^{\prime \prime}}{d t}\right) B^{i} \tag{7}
\end{equation*}
$$

[^0]For $i=j$ (7) implies that

$$
\left(\frac{d}{d t} B^{\prime i}\right) B^{i}=0 ;
$$

therefore (6) for $i=j$ becomes

$$
\begin{equation*}
c_{i i}=B^{\prime} A B^{i} . \tag{8}
\end{equation*}
$$

Formula (5) implies for $r>s, c_{r s}=0$; hence using (6) that

$$
B^{\prime r}\left(\frac{d B^{s}}{d t}\right)=B^{\prime r} A B^{s}
$$

and this combined with (7) implies

$$
\begin{equation*}
B^{\prime s}\left(\frac{d B^{r}}{d t}\right)=-B^{\prime r} A B^{s} \quad(r>s) \tag{9}
\end{equation*}
$$

For $s=i$ and $r=j$ and $i<j$ (9) substituted into (6) yields

$$
\begin{equation*}
c_{i j}=B^{\prime} A B^{i}+B^{\prime} A B^{i} \tag{10}
\end{equation*}
$$

Observing, when $A^{\prime}=$ transpose of A, that $B^{\prime j} A B^{i}=B^{\prime i} A^{\prime} B^{j}$ one may rewrite (10) as

$$
\begin{equation*}
c_{i j}=B^{\prime i}\left(A+A^{\prime}\right) B^{j} . \tag{11}
\end{equation*}
$$

Remarks. The fact that one has "explicit" formulas for $c_{i j}$ (i.e. (5), (8), and (10)) does not appear to simplify our treatment (loc. cit.) of the theory of "generalized characteristic exponents." Formulas (8) and (10) can of course be used to establish a number of "stability" theorems; and all such results, including the formulas themselves, carry over directly to systems of linear ordinary differential equations in Hilbert space. It is to be noted that our expression for C does not depend on the derivatives of the $b_{i j}(t)$.

Institute for Advanced Study and
University of California, Berkeley

[^0]: ${ }^{2}$ S. P. Diliberto, On systems of ordinary differential equations, pp. 1-48 of Contributions to the theory of non-linear oscillations, Annals of Mathematics Studies, Princeton, 1950.

