with mild restrictions on ϕ ensures that u/v satisfies the maximum principle; and this is the property which underlies the present analysis.

BIBLIOGRAPHY

- 1. P. Hartman and A. Wintner, On a comparison theorem for self-adjoint partial differential equations, Proc. Amer. Math. Soc. vol. 6 (1955).
- 2. H. Bateman, Partial differential equations of mathematical physics, New York, Dover, 1944, pp. 37, 135-138.
 - 3. De la Vallee Poussin, Cours d'analyse, vol. I, New York, Dover, 1956, p. 118.

University of California, Los Angeles

A NOTE ON LINEAR ORDINARY DIFFERENTIAL EQUATIONS

STEPHEN P. DILIBERTO1

Let

(1)
$$\frac{dx}{dt} = A(t)x,$$

where x is an n-column vector

$$\begin{pmatrix} x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n \end{pmatrix}$$

and $A = (a_{ij}(t))$ where $a_{ij}(t)$ are continuous real valued functions of time $(-\infty < t < +\infty)$. Let $y^1(t), \cdots, y^n(t)$ be any *n*-linearly independent solutions of (1) defined for all t. Let $B^1(t), \cdots, B^n(t)$ be the *n* normal-orthogonal vectors obtained from the set $\{y^i\}$ by the Gram-Schmidt orthogonalization process. Let B(t) be the orthogonal matrix whose jth column is $B^j(t)$, and introduce a new variable u (an *n*-column vector) defined by

$$(2) x = B(t)u.$$

u satisfies the linear differential equation

Received by the editors August 23, 1956.

¹ The author is indebted to the Office of Scientific Research for a research grant 1954–1955, during which time this work was undertaken.

$$\frac{du}{dt} = C(t)u$$

where C is related to A and B by

(4)
$$C(t) = B^{-1}(t)A(t)B(t) - B^{-1}(t)\frac{d}{dt}B(t).$$

We have shown² that

$$c_{ij}(t) = 0 if i > i.$$

We propose to show that the c_{ij} satisfies certain simple formulas for $i \le j$, and these will imply that the c_{ij} are bounded if the a_{ij} are bounded. Our first proof² of this fact was unsatisfactory.

We reemploy the convention that if B is an n-square matrix, B_i will denote the ith row of B and also the row vector determined by the ith row of B; B^i will denote the jth column of B and also the column vector determined by the jth column of B. If E, F, and G are three matrices (n-square) and E = FG, then $E_i = F_iG$ and $E^i = FG^i$, where in the latter two formulas one has the appropriate vector-matrix and matrix-vector multiplication. E^i_i will denote the (i-j)th element of E, and if E = FG, then $E^i_i = F_iG^i$ where the right side is scalar multiplication (of a row vector times a column vector). If $E = (e_{ij})$, then $E^i_i = e_{ij}$.

From (4) one finds

(5)
$$c_{ij} = B_i^{-1} A B^j - B_i^{-1} \left(\frac{dB}{dt}\right)^j$$

or

(6)
$$c_{ij} = B^{\prime i}AB^{j} - B^{\prime i}\left(\frac{dB^{j}}{dt}\right),$$

this last following from the fact the B is orthogonal, i.e. B', the transpose of B, satisfies $B' = B^{-1}$ and therefore $(B')_i = B_i^{-1}$, but $(B')_i = (B^i)'$ or B'^i (in our notation). From $\delta_{ij} = B_i^{-1}B^j = B'^iB^j$, one finds on differentiating that

(7)
$$\left(\frac{d}{dt}B^{\prime i}\right)B^{j} = -B^{\prime i}\left(\frac{d}{dt}B^{j}\right) = -\left(\frac{dB^{\prime j}}{dt}\right)B^{i}.$$

² S. P. Diliberto, On systems of ordinary differential equations, pp. 1-48 of Contributions to the theory of non-linear oscillations, Annals of Mathematics Studies, Princeton, 1950.

For i = j (7) implies that

$$\left(\frac{d}{dt}B^{\prime i}\right)B^{i}=0;$$

therefore (6) for i = j becomes

$$c_{ii} = B'^i A B^i.$$

Formula (5) implies for r > s, $c_{rs} = 0$; hence using (6) that

$$B'^{r}\left(\frac{dB^{s}}{dt}\right) = B'^{r}AB^{s}, \qquad r > s$$

and this combined with (7) implies

(9)
$$B'^{s}\left(\frac{dB^{r}}{dt}\right) = -B'^{r}AB^{s} \qquad (r > s).$$

For s = i and r = j and i < j (9) substituted into (6) yields

$$c_{ij} = B'^i A B^j + B'^j A B^i.$$

Observing, when A' = transpose of A, that $B'^{i}AB^{i} = B'^{i}A'B^{j}$ one may rewrite (10) as

$$c_{ij} = B'^i(A + A')B^j.$$

Remarks. The fact that one has "explicit" formulas for c_{ij} (i.e. (5), (8), and (10)) does not appear to simplify our treatment (loc. cit.) of the theory of "generalized characteristic exponents." Formulas (8) and (10) can of course be used to establish a number of "stability" theorems; and all such results, including the formulas themselves, carry over directly to systems of linear ordinary differential equations in Hilbert space. It is to be noted that our expression for C does not depend on the derivatives of the $b_{ij}(t)$.

Institute for Advanced Study and University of California, Berkeley