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1. Let X be a vector space2 over the real field, and let K be a non-

empty convex set in X. As usual, a real-valued function/ defined on

K is said to be convex, if /(aiXi+a2x2) ^ai/(xi)+a2/(x2) holds for any

two elements Xi, x2EK and for any ai^O, «2^0, ai+a2 = l./is said

to be concave, if —/ is convex.

Let/i (1 ^ifkm) be m convex functions defined on K. The system of

inequalities

(1) fi(x) < 0 (1 fkifkm)

is said to be consistent, if an element xEK satisfying all m inequalities

(i.e. a solution of (1)) does exist. Otherwise (1) is said to be incon-

sistent. A system (1) is said to be irreducibly inconsistent, if it is in-

consistent and if every proper subsystem of (1) is consistent.

The convex functions /i, ft, • • • , fm are said to be linearly inde-

pendent, if no linear combination JZJlx Ai/,- with real coefficients X,-,

not all zero, can remain SiO throughout K. In the special case when

K = X and when the//s are linear forms on X, this definition of linear

independence agrees with the usual one. Indeed, a linear form can

remain ^0 throughout the entire vector space X only when it is

identically zero. Incidentally, we observe that there exist arbitrarily

many linearly independent convex functions even on a one-dimen-

sional convex set. For example, the m convex functions /,(x)

= x' — l/(i+l) (l^ifkm) on the unit interval Ofkxfkl are linearly

independent for any natural number m. In fact, if some m real num-

bers X< satisfy the relation YlT-i^x'-l/^+l)) ^0 for Ofkxfkl,
then since we have JllYlT-i X,(x*'— l/(i + l))]dx = 0, the polynomial
^3™ i X,-(x' — l/(i + l)) must vanish identically and therefore all Xj = 0.

The purpose of this note is to prove the following results concerning

a system (1) of inequalities with convex functions /,- defined on K.
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Theorem 1. Either the system il) is consistent, or there exist m num-

bers X.-^O, not all zero, such that

m

(2) z2 X</v(x) ̂ 0 for all x £ K.
>-i

The two alternatives exclude each other.

Theorem 2. Let the system (1) be consistent, and let g be a concave

function defined on K. Then:

(i)  The inequality

(3) g(x) Z 0

is a consequence of (1)  [i.e., every xEK satisfying (1) also satisfies

(3) ], if and only if there exist m numbers X,-^0 such that

m

(4) g(x) g z2 Xi/,(x) for all x £ K.
«-i

(ii) The supremum y of g(x), when x£7C varies over all solutions of

(1), is finite, if and only if there exist m numbers X,-^0 such that

iix) — 22T-i^tfiix) is bounded above on K. When this condition is

satisfied, we have

(5) y = Min Sup \g(x) - £ \ifi(x)\ .
X^o   z£K   ( ,_1 )

Theorem 3. Let the system (1) be consistent, and let g be a concave

function defined on K. If inequality (3) is a consequence of the system

(1), and if (3) is not a consequence of any proper subsystem of (1), then

the convex functions /i, f2, • • • , fm are linearly independent.

Theorem 4. The system (1) is irreducibly inconsistent, if and only

if the following two conditions are both satisfied: (a) Any m — 1 of the

convex functions fi, f2, ■ • • ,fm are linearly independent; (b) there exist

m positive numbers Xi satisfying (2).

2. Before proving these theorems, we shall discuss their relation-

ship to certain known results.

First, if X is a finite dimensional real vector space, K is the convex

set formed by all vectors with positive components, and if the /,'s

are linear forms, then Theorem 1 becomes von Neumann's theorem

of the alternative for matrices [6, pp. 138-143].

Next, consider a system of linear inequalities

(6) <Pi(x) > af, (lg»^ tn)
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where </>< are linear forms on a real vector space X, and on are real

numbers. Applying Theorem 1 to K = X,fi = a.i—<pi, then the system

(6) is consistent on X, if and only if

m m

(7) 22^iai< Sup   ^,i(j;)
t-i *ex  t=i

holds for any m numbers X,-^0 which are not all zero. But 22?-i X,^<

being a linear form on X, the supremum on the right hand side of (7)

is + co except when 22?- iXi<£, = 0. Hence (6) is consistent on X, if

and only if, for any m numbers X<^0, not all zero, the relation

£™iX,-0< = O implies £™iX,a,<0. This is a theorem due to W. B.

Carver [2, Theorem 3].

Similarly, Theorem 4 includes the following result of Carver [2,

Theorem 2]: The system of linear inequalities (6) is irreducibly in-

consistent on X, if and only if any m — 1 of the linear forms <j>i are

linearly independent and there exist m positive numbers X< such that

Er-iX,^,=o, XXiX^.-^o.
Assume now that the system (6) is consistent on X. Let ^ be a

linear form on X and P a real number. By Theorem 2, (i), the inequal-

ity ypix) ^P is a consequence of (6) on X, if and only if there exist m

numbers X,- ̂ 0 such that

m

p - ypix) g 22 X<[«< - *<(*) ] for all x £ X.
i—l

Since \p— 22?-1^«0» 1S a linear form, the truth of the last inequality

for all xEX is equivalent to

m m

$ = 22 ^i<t>i    and    P ^ 22 X<a,-.
»-i »—i

Thus we are led to a result which is analogous to a classical theorem

of J. Farkas [4, pp. 5-7] and H. Weyl [7, Satz 3] concerning a system

of linear inequalities <£,-(x) ̂a,- [instead of the strict inequalities (6)].

Similarly, Theorem 2, (ii) includes the following result: The infimum

of i^(x), when x varies over all solutions of the consistent system (6)

on X, is finite, if and only if \p is a linear combination of the <j>i's with

non-negative coefficients. When this condition is satisfied, the in-

fimum in question is equal to the maximum of 22?-i^iai, when X<

vary under the conditions X,=^0 and \(/= 22?-i Xt0.-. Results analogous

to this, but concerning a system of linear inequalities <£,(x) ̂ a,- [in-

stead of the strict inequalities (6) ] have been given by Gale, Kuhn

and Tucker [5].
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3. We proceed now to prove the theorems stated above.

Proof of Theorem 1. That the two alternatives exclude each other

is clear. Let Em denote the w-dimensional Euclidean space. Let A

denote the set in Em formed by all points of the form (/i(x),/2(x), • • • ,

fm(x)), where xEK- Let B denote the convex hull of A. Denote by N

the open convex set in Em formed by all points with negative co-

ordinates. Consider an arbitrary point (£i, £2, • ■ ■ , im) in B. There

exist a finite number of elements Xi, x2, • • • , x„ in K and n numbers

aj ^ 0 (1 ^jfkn) with Y?j-iai = * such that fc = H"-i aifi(xj)
(lflifkm). Since/,- is convex, we have $<^/*(]C"-iaJ*/) I0r each i.

Now assume that (1) is inconsistent. Then for at least one i, we have

/»(]C"=i aixi) =0 and therefore also £,S:0. In other words, the convex

set B is disjoint from the open convex set N. By the separation theo-

rem of convex sets (see, e.g., [l, p. 71, Proposition 1 and p. 52, Prop-

osition 16]), there exist m numbers X,-, not all zero, such that

m

X X& < 0 for (Zi, h,---,tm)EN
i-l

and

rn

E Ui ^ 0 for (fe, fc, • • • , {„) G B.
t=i

The first relation implies X,-^0 (1 fkifkm), the second relation implies

(2).

Another Proof of Theorem 1. For each xEK, let

U(x) = {(fr, h, ■ ■ ■ , &.) EE»\ti> fi(x) for 1 fk i fl m}.

Let Z7=Uxex U(x). Because the//s are convex, the open set U is

convex. Assume that (1) is inconsistent. Then U does not contain

the origin 0 = (0, 0, • • • , 0). Therefore, again by the separation

theorem of convex sets, there exist m numbers Xj, not all zero, such

that £r=iX.£.>0 for all (&, &, • • • , im)EU- This implies (2) and

X,-^0 (1 fkifkm). In fact, for any point (£1, £2, • • • , %m)EU and for

any 77 >0, the point (£1, • • • , £,-_i, £,-+77, £<+i, ••-,£„) remains in i7.

If X,<0, then by taking 77>0 sufficiently large, we would have

Xi«<-H)+E***&<o.
Proof of Theorem 2. (i) We need only prove the "only if" part.

Assume that (3) is a consequence of (1). Then the system obtained

by adjoining the inequality —g(x) <0 to (1) is inconsistent. Applica-

tion of Theorem 1 to this inconsistent system yields the desired con-

dition.
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(ii) 7 is finite, if and only if there exists a real number P such that

the inequality g(x) —/3g0 is a consequence of (1). Then the condition

for y to be finite follows from (i). Assume now that y is finite. Then

&ix)~7 = 0 is a consequence of (1). By (i), there are p<^0 such that

g(x) — 22?-1 Pifiix) =-7 for all x£7C. On the other hand, for any e>0,

there is a solution xeEK of (1) such that gix,)>y — e. If X.SrO and

if a denotes the supremum of g(x) — 22?-i X»/.(x) over K, then

y — e<g(xt)^a+22?-i^ifi(x<;)=a f°r every e>0. Hence y^a and

(5) is proved.

Proof of Theorem 3. First, by Theorem 2, (i), there are m num-

bers X,-^0 satisfying (4). As (3) is not a consequence of any proper

subsystem of (1), we have Xi>0 (1 ^i^m). Suppose, if possible, that

Pi are real numbers, not all zero, such that 22?-lMi/iM =0 f°r ah

xEK. Then as (1) is consistent, at least one of the /x/s is <0. Let

1= {i\p,i<0} and v = Maxiei\i/pi<0. Put r?i=X,—vpn (l^i^m).
Then

m M fit m

g(x)   =  E *M*)   =   E Wi*)   - V Z Pifiix)   =   Z Vifiix)
i-1 «~1 j=l i-l

for all xEK. But each i?l = 0 and at least one of them is 0, so by

Theorem 2, (i), (3) would be a consequence of some proper subsystem

of (1). This proves that the convex functions fi,f2, ■ • • ,fm are linearly

independent.

Proof of Theorem 4. Assume that (1) is irreducibly inconsistent.

Then (b) follows from Theorem 1. The inequality —/m(x)^0 is a

consequence of the consistent system

(8) Ux) < 0 (1 £ • £ m - 1)

without being a consequence of any proper subsystem of (8). Hence

by Theorem 3, the raj — 1 convex functions fi,f2, • • • ,fm-i are linearly

independent. This proves (a). Conversely, by Theorem 1, (a) implies

that every proper subsystem of (1) is consistent, (b) implies the in-

consistency of (1).

4. Instead of system (1) of strict inequalities, one may wish to con-

sider the system

(9) /.(*) ^0, (1 ^ i ^ m)

where /,• are as before convex functions defined on a convex set K.

From a known result on linear inequalities (see e.g., [3, Theorem 1 ]),

the following conjecture would seem to be reasonable: If (9) is incon-

sistent,  then  there  exist  m  non-negative  numbers X< such  that
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y^<li Xjfj(x)>0 for all xEK. This conjecture turns out to be false.

Let X be the Euclidean plane, where points are denoted by x

= (£i> £2). Let K be the convex set which is the union of the open half-

plane £2>0 and the half-line £i>0, £2 = 0. Letfu ft be defined on K by

fi(x) =£i,/2(x) =£2- Then the system fi(x) fkO (i = l, 2) is inconsistent

on K, but no pair of non-negative numbers Xi, X2 can satisfy Xi£i

+X2£2>0forall fe, &EK.

5. In this final section, we indicate that Theorems 1 and 2 can be

extended to a much more general situation. Let K be as before a non-

empty convex set in a vector space X over the real field. Let F be a

locally convex topological real vector space. Let P be a convex cone

in F with nonempty interior. The interior of P will be denoted by

Int P. A function / defined on K and taking its values in F is said to

be convex, if

«]/(*i) + «s/(*2) — f(ctiXi + a2xt) E P

holds for any two elements Xi, x2EK. and for any «i^0, at^O,

tti+«2 = l. Then Theorems 1, 2 can be generalized, if we replace the

system (1) of inequalities involving m real-valued convex functions

by a single relation —/(x)GIntP, where/ is a convex function de-

fined on K and taking its values in F.
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