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Introduction. In a recent paper, [l], A. Beurling has shown that

the positive translates of an integrable function defined on [0, oo)

generate, in a certain sense, at least one exponential of the form

e~iax, x>0, la<0, provided that the function does not vanish outside

a finite interval. It is the converse problem with which we shall be

concerned here; namely, to what extent can the exponentials so gen-

erated be used to approximate the given function. We are able to give

what amounts to a complete solution.

The situation resembles strongly that of Schwartz' theory of mean

periodic functions [2]. M. Kahane has shown in [3] (see also [4])

how this theory can be presented very simply using the notion of

Fourier transform of a mean periodic function. Beurling also made

use of this method in the present case; however, we shall find it con-

venient to exploit this tool more systematically, in closer analogy

with Kahane's work. We shall also study our approximations in a

topology (the same as the one used in the theory of mean periodic

functions) which is simpler than that of Beurling.

Beurling based his work mainly on a certain division theorem

which states roughly that an entire function is of finite exponential

type if it is bounded on a half plane and equal to the ratio of two

bounded analytic functions on the complementary half plane. The

conclusions we make here follow from a refinement of this given in

§3 which yields an upper bound for the type of such an entire func-

tion.

It should be remarked that B. Nyman ([7, pp. 28-29]) has estab-

lished a result similar to the one given here, using, however, a quite

different topology. (The referee calls attention to this in his report;

although I have since had the opportunity to consult Nyman's

work, it was not accessible to me in New York at the first writing of

this paper.)

1. We shall consider functions fELi(— «, oo) which are continu-

ous on [0, oo) and vanish on (— oo, 0). Together with such functions

/ we also consider their positive translates fh, fn(x) =/(x+h), h>0.

E denotes the space of continuous functions on [0, oo), and Ef that

subspace of E consisting of functions which can be uniformly ap-
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proximated on compacta by linear combinations of the fh (restricted

to [0, »)),i>0.

1.1. Definition./is said to be mean periodic on [0, co) if and only

if Ef is a proper subset of E.

A standard argument due to F. Riesz1 shows that/ is mean peri-

odic on [0, oo) if and only if there exists a nonzero measure m of

compact support in [0, oo) so that fofh(x)dmx = 0, h>0. If m is any

measure, we use systematically the notation:

dmx = dm( — x),       m* = m.

Then, the above condition that/ be mean periodic on [0, oo) is that

for some mj^O of compact support in (— oo, 0], m*f = 0 on [0, co).

(As is customary, we write (m *f)(x) =flaf(x—y)dmy; m*f is the

convolution of m with /.)

1.2. Definition, For/ mean periodic on [0, oo), Lf denotes the

infimum of all L>0 so that there exists a measure m^O having sup-

port in [-L, 0] with m*f = 0 on [0, oo).

Evidently, if L/>0 and 0<k<Lf, any continuous function on [0, k]

can be uniformly approximated by linear combinations of the fk,

h>0, while for k>Lf this is no longer true. For m^O of compact sup-

port in (— co, 0] such that m */ = 0 on [0, co) let g = m */. Then g is

also of compact support in (— », 0], vanishing outside the smallest

interval containing the support of m. We indicate the Fourier trans-

form of any measure or function by placing a circumflex over the

symbol denoting it, e.g.

eiXxdmx.
-OO

g(X) and in (X) are then entire functions of finite exponential type, so

/W - -^>
J m(X)

possesses a meromorphic extension to the entire complex plane. Since

1 Let F be any subspace of E closed with respect to uniform convergence on com-

pacta. If g is a function in E^F, then there exists a measure m of compact support

in [0, ») so that fgdm^O whilst fudm^O for aGF. (The converse of this is evident.)

For there must be a d>0 and a finite interval -7 in [0, °°) such that for no u(EF is

\g—u\ <& on /. Let B denote the Banach space of continuous functions on J under

the uniform norm, and F' the closed subspace of B generated by the restrictions of the

members of F to /. If g' is the restriction of g to /, g'tB~F'. By the Hahn-Banach

theorem, there must be a continuous functional A on B so that^4g'^0, Au'= 0 for

u'tF'. By the Riesz representation theorem there is then a measure m with support

in / so that Av—fvdm, vtB. This leads immediately to the desired conclusion.



430 PAUL KOOSIS [June

/ = 0 on (— oo , 0) and/£T,i,/(X) is regular and bounded for 7X>0.

1.3. Theorem. A necessary and sufficient condition that the function

xne-iax rx > o) oe in Ef is that a be at least an n + 1 fold pole off(\).

The proof is the same as that of Theorem 1 in [3], but for the

reader's convenience, it is reproduced here.

Consider the case ra = 0. Suppose a is a pole of /(A). By the above

formula for/(X), we must have m(a) =0 for every measure m of com-

pact support in (— co, 0] such that m*f = 0 on [0, oo). On restating

this in terms of m and using the result given in the footnote, we see

that e'^EE/.
If, conversely, e~iaxEE/, pick a nonzero m of compact support in

(— oo, 0] so that m *f vanishes on [0, =o). We must then have m(a)

= 0, and we are done unless also g(a) =0. In that case, consider the

functions M = m*K, G = g*K, where

(er"*, x > 0,
K(x) = \

lO, x < 0.

(The convolution of a function g with another function is defined

the same way as that of a measure m with another function was defined

above, save that we use g(x)dx instead of dmx.)

Since m, and g have compact supports in (— °°, 0] and m(a) =g(a)

= 0, we see that M and G have compact supports in (— oo, 0), and

it is legitimate (remembering that/ = 0 on (— °°, 0)) to apply the

usual commutivity and associativity rules for convolutions to con-

clude G=(m*f)*K=(m*K) *f=M'*/. In particular, M*f = G van-
ishes on [0, oo), whence M(a) =0, using again the fact that e~iaxEE/.

Now

K(X) = ——, IX > la,
X — a

whence by analytic continuation G(\) =ig(\)/(\ — a) for all X. Since

/(A) =G(X)/M(X), we are done if the zero of |(X) at a is of order one.

Otherwise, the argument may be repeated to attain the desired con-

clusion.

In case ra>0, one notes that if x"e~{axEEf, then xme~<axEEt for

m = 0, 1, • • • , n — l, this following immediately from the definition

of E/. The theorem for the general case is then established in the

same way as above.

From the above theorem and the fact that /(X) is regular and

bounded in 7X>0, it follows that we can have x"e~iaxEEf only for

7a <0.
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1.4. Definition. Xf denotes the set of functions ("exponential

monomials") of the form xne~iax in £/.

The question with which we are concerned in this paper is whether

or not a given/ mean periodic on [0, oo) can be uniformly approxi-

mated on compact subsets of [0, co) by linear combinations of mem-

bers of Xf. It turns out that this is not true, but that fk can be so

approximated for h sufficiently large.

1.5. Definition. At denotes the infimum of all h>0 such that/*

can be approximated in the way mentioned above.

Our problem reduces to the study of the relation between the num-

bers Af and Ls.

We need one last preliminary result:

1.6. Theorem. Let f be mean periodic on [0, co) and let m^O be a

measure of compact support in (— °°, 0] so that m*f = 0 on [0, oo).

Let p be any measure of compact support in (— oo, 0 ] and let

, ,        ((P*f)(x), x > 0,
u(x) =  <

l0, x < 0.

Then u is mean periodic on [0, oo) and m*u = 0 there. Moreover, the set

of poles of u(X) is the set of poles off(X) diminished by the set of zeros of

p~(\) (taking into account multiplicities).

Proof. The first statement follows because / vanishes off [0, co)

while m and p have their supports there. Again because of this,

u =p */+a function of compact support, so 4(X) =p(X)J(X) +an entire

function, and the second statement follows.

2. We shall prove our division theorem.

2.1. Lemma. Let H(z)=f01e-i"dmt, m^O, and let, for y>0, M(y)

= supx |H(x+iy)|. Then always M(y)>0 and for any e>0 there is

an integer k>0 so that M(k)/M(k — 1) <e1+t.

Proof. That M(y) >0 follows from m^Obya standard uniqueness

theorem. If the second conclusion is false, then for some e>0, M(k)

— M(0)ea+e)k ior k integers ->», whence lim supj,,„ log M(y)/y

Ssl+e, which contradicts the definition of H(z).

2.2. Theorem. Let F(z)=G(z)/H(z) be analytic everywhere, with

G(z) and H(z) entire. Suppose

1. \F(z)\ is bounded for lz>0.

2. For k>0, \G(z)\ is bounded for Iz<k.
3. H(z)=fie~iztdmt,m^0.

Then, for any e>0 there exists a constant K so that
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\F(z)\  < Jf«w+*|i|.

Proof. By a change of variable, we may reduce the theorem to the

case .4=1, which we suppose done. Retaining the notation of 2.1,

choose an integer k>0 so that log (M(k)/M(k — 1)) < l+e/4, which is

possible by that lemma. By definition of M(y) we can then find a real

c so that

M(k) e
In -.-—-r < H-

\H(c+(k- l)i)\  ~ 2

By means of the transformation

i+ (z - c - ik)
(1) 3 —► W =-

i — (z — c — ik)

map Iz<k conformally onto |w| <1 so that c + (k — l)i goes into 0.

|77(z)| is bounded for Iz<k, hence by the Phragmen-Lindelof theo-

rem, 177(2)| <M(k) for Iz<k. Put H(z)/M(k)=h(w), G(z) =g(w) for

z—fw in the above mapping. We have, for |w| <1, |^(w)| <1 and by

hypothesis |g(w)| <some number C.

By a well-known theorem [5,p. 188] wecan writeg(w) =Pi(w)gi(w),

h(w)=P2(w)f(w), where Pi(w) and P2(w) are Blaschke products,

gi(w) and f(w) are free of zeros in \w\ <1; moreover, |Pi(w)| <1,

\P2(w)\ <1, \gi(w)\ <C, and \f(w)\ <1 there. Since g(w)/M(k)h(w)
= F(z) is free of poles in \w\ <1, some of the zeros of Pi(w) must

cancel those of P2(w), and we have Pi(w)/P2(w)=P(w), another

Blaschke product, |P(w)| <1 in \w\ <1. We therefore have, for

i c
(2) IZ<k, F(Z) <   —-:-T.

M(k) | f(w) |

Since |/(w)| <1 and f(w) is free of zeros in |«/| <1, we can write

[5, p. 197]:

If2- (1 - r2)dp<p
(3) ln   /(«'•)     =-'—-

1 ' 2xJ0     l + r2-2rcos(8-<p)

for p, a positive measure on [0, 2ir]. Therefore

log | h(0) |  = log | P2(0) | + log | /(0) |   < - — f    dpd>
2-7T J o

and

1    r2T , M(k) e
- <^<-log    A(0)    =log -—   =l + y
2tJ0 77(c + (k — l)i) 2
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by choice of k and c. This, combined with (3) yields

(4) -log|/(„)|<_JR-(1 + -i.).

For z = Rei®, ir<&<2ir, we have, on substituting in (1),

4 (1 + k)2 + c2 - 2R((1 + k) sin $ + c cos 4>) + R2

1 —  | w |2 k — R sin $

Since &>0, this expression is

(i) <const+i?/sin b, w+b<Q<2ir — b, b any fixed number be-

tween 0 and 7r/2;

(ii)   < const+.8'i?2 for some B', ir<$<2ir.

Combining this with (2) and (4) we find:

. , (1 + t/2)R
| F(Re^) |   < constexp-, ir+b<$<2ir-b,

sin b

| F(Re^) |   < const- exp BR2, tt < $ < 2tt.

Now |E(z)| is by hypothesis bounded on the real axis, so, applying

the Phragmen-Lindelof theorem in each of the sectors ir<$<.ir + b,

2ir — b<^<2ir, we find

. . (l + e/2)|z|
I F(z) |   < const- exp —-

sin b

holds in the lower half plane. Making b close enough to 7r/2, we get

| F(z) | <Xe(1+<)|'1, which holds also in the upper half plane, since by

hypothesis | F(z) \ is bounded there. Q.E.D.

3. We are now able to establish the main result:

3.1. Theorem. For f mean periodic on [0, oo), 0<Af<Lf.

Proof. In order to show that/* is uniformly approximable by linear

combinations of members of Xt on compact subsets of [0, oo), it is

enough to show that for any measure p~ of compact support therein

which satisfies

/. 00

xne~iaxdpx = 0 for all functious xne-*°x in Xt,
o

one has f0™fh(x)dpx = 0.  (See above footnote.) Supposing that p~ is

such a measure, define

, N       f(P*f)(x), x > 0,
u(x) =  <

[0, x<0.
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We will be done if we show that m(x) vanishes for x>L/.

Let my^O be a measure on [0, T./+e] so that m*f = 0 on [0, °o).

By 1.6, m * u = v has compact support in (— oo , 0 ] and our assumption

on p means by 1.3 that ^(X) vanishes at all the poles of/(X), so by 1.6

again, ^(X) is analytic everywhere. 4(\) = v(X)/ih(X); v(X) is obviously

bounded for L\<k, k>0, and

r>Lf+i

fh(X) =   I        e~iKxdmx,
J o

while 4(X) is bounded for 7X>0 as in the remarks following 1.2. We

may therefore apply 2.2 to conclude | #(X) | <K exp (7_/ + 2e) |X|.

By an obvious modification of the Paley-Wiener theorem [6, p.

109], it follows that u(x) =0, x>L/ + 2e, and squeezing e, we obtain

the required result.

3.2. Corollary. If f is mean periodic on [0, oo) and X/= {0}, then

f(x) = 0 for x > L{.

3.3. We show finally by means of two examples that the inequality

0<Af<Lf established in 3.1 cannot be improved.

Example 1. Let

co

T, anerxeinx, x>0,

f(x) =     _M

.0, x < 0,

where the a„ are chosen all >0 so that their infinite sum converges.

It is easy to see (e.g., on computing /(X) and using 1.3) that Xj

= [e~xeinx] whence Af = 0. Xf is clearly uniformly complete on any

interval [0, k], k<2ir, since for a given continuous q on such an

interval we may approximate exq(x) uniformly by linear combinations

of the einx thereon. But for k>2ir, this is no longer true; only those

continuous functions q for which q(x + 2if) =e~uq(x) can be so ap-

proximated.

So here Lt = 2ir, whereas .4/ = 0.

Example 2. Let

[tr*, x > 1,

f(x) = \e-\ 0 < x < 1,

10, x < 0.

For any e>0 we can clearly find a measure th on [l, 1+e] so that

fl+ee~xdmx = 0. If we extend m so as to be zero on [0, 1) we will have

f01+'fh(x)dmx = 0, h>0. Therefore Lf < 1. Clearly, X,= {e~x} and since
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f(x) = const on [0, l], ^4/ = l. So here Af>Lf; i.e., in conjunction with

3.1, Af = Lf. (It is also easy to show directly that L/=l.) In conclu-

sion, I would like to express my thanks to Dr. Peter Lax, who intro-

duced me to this subject, and with whom I have had many helpful

discussions.
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FUNCTIONAL EQUATIONS IN THE THEORY OF DYNAMIC
PROGRAMMING—VII. A PARTIAL DIFFERENTIAL

EQUATION FOR THE FREDHOLM RESOLVENT

RICHARD BELLMAN

1. Introduction. Let K(x, y) be a symmetric kernel over the square

Ofkx, yfkT, continuous in both variables in this region, and possess-

ing the additional property that /ur/0rX(x, y)u(x)u(y)dxdy+foU2(x)dx

is positive definite. Then the Fredholm integral equation

(1) u(x) + v(x) + )    K(x, y)u(y)dy = 0,        0 fk a fk T,

has a unique solution for any function v(x) continuous for afkx-fkT.

This solution may be represented in the form

(2) u(x) = - v(x) +  I    Q(x, y, a)v(y)dy.
J a

Let us call the kernel Q(x, y, a) the Fredholm resolvent.

The purpose of this note is to show that Q(x, y, a) satisfies the
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