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Introduction. In the study of oscillation and boundedness of solu-

tions of the second order scalar differential equation

(1) (P(x)y')' + f(x)y = 0, afk x< »

the Priifer polar-coordinate transformation

(2) y(x) = r(x) sin 6(x),        p(x)y'(x) = r(x) cos 6(x)

has proved to be a useful tool [l ].* In the present paper an analogous

transformation is developed and applied to the corresponding second

order self-adjoint (square) matrix differential equation

(3) (P(x)Y')'+ F(x)Y = 0.

See [2; 4, Chap. IV; 6] for other discussions of this equation.

In order to pursue this analogy interpret the transformation (2)

to be effected by expressing each nontrivial solution y(x) of (1), and

its corresponding function p(x)y'(x), as a product of a positive func-

tion r(x) and a solution of a second order differential equation of the

form:

(4) (y'/q(x))' + q(x)y = 0, where q(x) = d'(x), if 6'(x) ^ 0;

or of the system:

(5) y' = q(x)z,        z' = — q(x)y, if 8'(x) has zeros.

The first section will be devoted to properties of solutions of the

matrix system

(6) Y' = Q(x)Z,       Z' = - Q(x)Y.

Then, in §2, it will be shown that for every nontrivial (matrix) solu-

tion Y(x) of (3) there exists a nonsingular matrix P(x), a symmetric

matrix Q(x) and solutions Y=S(x), Z=C(x) of (6) such that
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(7) Y(x) = S*(x)R(x) and P(x)Y'(x)=C*(x)R(x)

where the (*) denotes the transpose of the indicated square matrix.

It is to be noted that for ra = l, (7) coincides with (2). Finally, in the

last section nonoscillation theorems for (3) and (6) are given, which

add to the collection in [6]. Boundedness results have been treated

in [2].

1. Matrix sines and cosines. Let Q(x) be an ra Xn symmetric matrix

of continuous functions on a^x< oo. Then by elementary existence

theory there exists a solution pair of raXra matrices

(8) Y = S(x) =. S[a, x; Q],       Z = C(x) =- C[a, x; Q]

of (6) which satisfies the initial conditions

Y(a) = 0,       Z(a) = E (the identity matrix).

Note that if ra = 1 (the scalar case), or if Q commutes with its integral

JlQ (e-g- Q = constant or a diagonal matrix), then 5 = sin JlQ and

C = cos JlQ. In general, S and C cannot be expressed as the usual sine

and cosine infinite series, but they behave much like matrix functions

of JlQ.
The following three observations are easily verified.

(i) Y=C, Z= —S also form a solution pair of (6) with initial con-

ditions Y(a) =E, Z(a)=0.

(ii) If Q(x) is nonsingular, both S(x) and C(x) are solutions of

(Q-1(x)Y')' + Q(x)Y=0.

(iii) S'(X) = Q{X)C{X)> C(x) = " C(*)S(*),

S(a) = 0, S'(a) = Q(a),        C(a) = E, C'(a) = 0.,

Theorem 1.1. For a given symmetric continuous matrix Q(x) on

a ^ x < oo the following identities are true:

(9) C*C + S*S = E,       C*S = S*C,

(10) CC* + SS* = E,       CS* = SC*.

Proof. (C*C+S*S)' = 0 and (C*S-S*Q' = 0. Hence both com-

binations in parentheses are constant matrices and (9) is established

by evaluating them at x = a. The identities (10) may be treated in a

similar manner and, although the derivatives are not immediately

zero, it is easy to show that L = CC* + SS* and M=CS* — SC* satisfy

the system

V = QM - MQ,   M' = -QL + LQ,   L(a) = E,   M(a) = 0,

whose only solution is L = E, M = 0. However, (10) follows directly
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from (9), and conversely, as is seen by the next lemma. The proof is

due to Professor S. Kakutani.

Lemma 1.1. If A and B are two n X n real matrices such that

A*A+B*B = EandA*B=B*A,thenAA*+BB* = EandAB*+BA*.

Proof of the lemma. Note that the hypothesis gives that the left

inverse of A +iB is its adjoint A* — iB*, where *'=( —1)1/2. Hence,

A*—iB* is also the right inverse of A+iB, i.e.

£ = (A + iB)(A* - iB*) = (AA* + BB*) + i(BA* - AB*),

and the lemma is proved.

The trace of the first identity of (9) yields

(iv) ||5||S+||C||2 = „,

where ||^4|| denotes the square root of the sum of the squares of the

elements of a matrix A, and that every element of S, or C, is bounded

on afkx< oo.

Oscillation properties of 5 and C will be discussed in the last sec-

tion.

2. The Priifer transformation. Consider the general equation

(3) (P(x)Y')' + F(x)Y = 0, a fk x < oo,

where P(x) and P(x) are nXn symmetric matrices of continuous

functions and P(x) is positive definite for afkx< oo. For each pair

U(x), V(x) of solutions of (3) let the constant matrix

(11) W(U, V) = U*PV - U*'PV

be called the Wronskian. See [2] for its properties.

Theorem 2.1. // F(x) is any nontrivial (matrix) solution of (3), with

the above conditions on the coefficients, such that Y(a)=0, then on

afkx<<x>, W(Y, Y)=0 and there exists a symmetric continuous

matrix Q(x) and a nonsingular continuously differentiable matrix R(x)

such that

(12) F(x) = S*[a, x; Q]R(x) and P(x)Y'(x) = C*[a, x; Q]R(x).

Furthermore, R(x) and Q(x) satisfy the differential and "integral" equa-

tions

(13) R' = iSP-'C* - CFS*}R,       R(a) = P(a)Y'(a),

(14) 0 = CP-lC* + SFS*.
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Proof. Suppose that Q and R exist such that (12) is true. Differen-

tiation and observation (iii) yield P~1C*R = C*QR + S*R' and

-FS*R=-S*QR + C*R. By multiplying on the left of the first
equation by S and the second by C, adding and employing identities

(10) it is seen that (13) follows.

Similarly,

(14') {CP-'C* + SFS* }R = QR.

Suppose that 7?(a) is a singular matrix, then | F'(a)| =0 and tnere

exists a nonzero constant (column) vector a such that F'(a)a = 0. Let

P(x) = Y(x)a, then P(x) is the vector solution of the vector matrix

equation (PP')' + Fp = 0 satisfying /3(a) = /3'(a) =0. Uniqueness gives

that P(x) = Y(x)a=^0 and |F(x)|=0, a^x<oo. However, by [4,

p. 9], ra is the highest order of a zero of a nontrivial solution of (3),

which gives a contradiction and, hence, R(a) is nonsingular. Since

R(x) is a solution of the first order linear equation (13) then R(x) is

nonsingular for a^x< oo. Therefore the right multiplication of (14')

by i?_1 gives (14). Note that R(x) can be determined, as for the scalar

case, ra = l, by the identity

(15) R*R = Y*Y + Y*'P*PY'.

Also, if for a<x<b, | Y(x)\ 9*0 then

(16) P(x)Y'(x)Y-\x) = S-^a, x; Q]C[a, x; Q].

For ra = l, the right-hand side of (16) becomes cot JlQ and it is a

simple matter to solve for Q in terms of the inverse cotangent. Lack-

ing such a tool for arbitrary order ra, the "integral" equation (14) will

be solved by successive approximations.

Lemma 2.1. If Qi(x) and Q2(x) are symmetric continuous matrices

on a^x< co and Si = S[a, x; Qi], d = C[a, x; Qi], (i = l, 2), then

W lSJ~*j\=2nfX\\Q2-Qi\\, a^<».

Proof of the lemma. For each i = l, 2, the system CI = —QiSit

Si =QiCi, Si(a) =0, Ci(a) =E, may be expressed as a single equation

T' = G,-7\- where Ti is the 2«X« matrix

©--up-
Subtraction yields the nonhomogenous equation

(7S - Ti)' - Gi(T2 - Ti) = (G, - GOT, and T,(a) - Ti(a) = 0.
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Let
/   Ci    SA

then M' — GiM = 0 and M(0)=E and, since Gi is skew-symmetric

then ||M(x)||=||£|| =nx>2 and ||Af—1(a:)|| =||£|| =w"2. Use of the solu-

tion M(x) of the homogeneous equation yields

T2(x) - Ti(x) = M(x)  f  M~Ks) {Gt(s) - d(s)} T2(s)ds
J 0

from which the desired inequalities of the lemma follow.

To return to the solution of (14) by successive approximations, let

Qo(x) be any continuous, symmetric nXn matrix on afkx< oo and

for each non-negative integer n let

Sn = S[a, x;Qn],       Cn = C[a, x;Qn] and
(18)

Qn+l(x)   =  CnP-'Cn  + SnFSt
Since,

Qn+l  ~ Qn

=   (1/2)(C - Cn-.l)P-\C*n + Cn-l) + (1/2)(C + Cn-l)P-KCn ~ Ct-l)

+  (1/2) (5, - Sn-l)F(St + Sl-l)  +   (1/2) (5n + Sn-l)F(Sn   ~ Sn-l),

then by Lemma 2.1 the following Lipschitz inequality is achieved

||Cn+l(x)   - Qn(x)\\   fk 4n{||P-»(*)||  + ||F(*)|| }   fX\\Qn  ~ Qn-l\\,

(19)
a fk x < co.

It is now a simple matter to follow the well-known techniques of suc-

cessive approximations to show that lim„ .„ Qn(x) exists (termwise)

and is continuous on a fkx < oo and that the limit matrix Q(x) satisfies

(14). Once Q(x) is obtained then P(x) is obtained immediately from

(13) and it remains only to show

Lemma 2.2. If R(x) and Q(x) are a solution pair of (13, 14) and

Z(x)=S*[a, x; Q]R(x) then P(x)Z'(x) = C*[a, x; Q]R(x) and Z(x) is

a solution of (3) which satisfies Z(a) =0, and Z'(a) = Y'(a).

Proof of the lemma. By differentiating and applying (iii), (9),

(10), (13) and (14): Z(a)=0, Z'=S*R' + C*QR = P~1C*R, Z'(a)
= P~1(a)R(a)=Y'(a) and (PZ')'= C*R'-S*QR= -FZ. This com-
pletes the proof of the lemma and of Theorem 2.1.
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3. Nonoscillation theorems. Note that if ra = 1 and Q(x) is continu-

ous and positive (definite) for a^x< oo and sin JlQ is nonoscillatory

(for large x) then J?Q< oo. Furthermore, if J"Q<tt/2 then sin JlQ^O

and cos JlQ7*0 for a<x< co. These facts will be generalized to anal-

ogous ones for arbitrary order ra. Consider first equation (3) with the

assumptions of the preceding section on the coefficients.

Definition. Equation (3) is said to be nonoscillatory (for large x)

provided that there exists a number b^a and a solution U(x) such

that W(U, U)=0 and | U(x)\ =^0 for ogx< co. That this is equiva-

lent to nonexistence of conjugate points for the corresponding matrix-

vector equation is observed in [6, p. 314].

Theorem 3.1 (Necessary condition for nonoscillation). If (3), with

the assumptions of §2 on the coefficients, is nonoscillatory then there exists

a (matrix) solution Z(x) and a number c>a such that Z(x) is nonsingu-

lar for c < x < oo, W(Z, Z) = 0 and if (Z*PZ)~1 = (kij(x)), then

J"\kn\ <°o, *, J = l, ■ • • , ra.

Proof. Since (3) is nonoscillatory then there exists b^a and a

solution U(x) such that W(U, 77) =0 and | U(x)\ ?±0, o^x< oo. By

differentiation it is easily seen that

(20) Z(x) = U(x)H(x),   where    H(x) =   f   (^PU)'1
J b

is a solution of (3) such that Z(b) =0, W(Z, Z)=0 and, since H(x) is

positive definite for 6<x<co, then |Z(.r)| =| U(x)\ |77(x)| t±0 for

b<x< oo. Also W(V, Z) =E. Since 77= TJ~XZ is symmetric and posi-

tive definite then T(x)=H"1 = Z~1U has these same properties.

Furthermore, T'= -H-'H'H'1 = -Z^P^Z*-1 and if Ob,

T(x) = T(c) -  )    (Z*PZ)~\ c g x < oo.

Because T(x) is positive definite on c^x< oo, then its trace, tr T(x)

>0. Also tr [(Z*PZ)"1]>0 for cgx<oo. Hence ft tr [(Z*PZ)~1]

<tr T(c) and J? tr [(Z*PZ)~1] < oo. Furthermore, ||(Z*PZ)-1||

^tr (Z*PZ)~1 and the conclusion, J"\ka\dx< oo, follows where the

absolute value signs are redundant for i =/.

Corollary 3.1.1. Additional conclusions to Theorem 3.1 are

/cw(tr P)-1||z||-2< « and ft tr (P-1)||z||-2< oo.

Proof. From Theorem 3.1, J" tr [(Z*PZ)~1] < ». Since P(x) is

symmetric and positive definite there exists a nonsingular matrix
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N(x) such that P(x)=N*(x)N(x). Furthermore, ||P|| ^||A^||2 = tr P

fk n\\P\\ and

tr [(Z*PZ)-i] = tr [(ZNy^ZN)*-1] = IKZAO-'H2 ^ «||AZ||-2

^ »||a||-2||z||-2 = «(tr p)-1!^!!-2.

Let G = (Z*PZ)~l then ZGZ*=P~l and tr G^\\G\\ ^[|J^~1|[]|^T|[—2

2: (l/«) tr (P_1)|[z|p2. By combining these inequalities the lemma is

proved.

Corollary 3.1.2. If in addition to (3) being nonoscillatory, all solu-

tions of (3) are bounded1 then /" tr (P_1) < °° and

(trP)-1 < oo.

Proof. Follows immediately from Corollary 3.1.1.

An immediate result is a generalization of the first comment of this

section:

Corollary 3.1.3. If Q(x) is continuous, symmetric and positive

definite on a fkx < oo such that /°° tr Q = oo, then there exists at least one

number b>a such that \ S[a, b; Q]\ =0.

Proof. According to observation (ii) of the first section, 5 satisfies

(3), where P = Q~1 and F = Q. If | S| ^0 for a<x<oo then by defini-

tion (Q-1Y')' + QY=0 is nonoscillatory. But by Corollary 3.1.2,

/°° tr (P_1) =/°° tr Q< oo which gives a contradiction. This section

will be concluded by a sufficient condition ior nonoscillation which is

a generalization of the second remark at the beginning of the section.

Theorem 3.2. If Q(x) is a continuous, symmetric and positive definite

matrix on afkx< oo such that /" tr Q<ir/2n112, then \ S[a, x; Q]\ =^0

and [ C[a, x; Q]\ 9^0 for a<x< oo.

Proof. Suppose that | C\ =0 for x = b and b is the smallest such

number >a. Let K(x)=SC~1, afkx<b, then K(a)=0, K(x) is sym-

metric and

(23) K' = KQK + Q for a fk x < b.

This equation may be written in the form

K' - AK- KA* = Q,   where   A = (1/2) KQ.

According to [5] the solution of the homogeneous part of Y'—AY

— YA* = 0 is Y=I(x)MI*(x), where if is a constant matrix and J(x)

8 Sufficient conditions for boundedness are given in f2l.
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is the solution of J'=AJ, J(a)=E. By the variation of constants

method the solution of the nonhomogeneous equation is

K(x) = /(*) | fXJ-1(t)Q(t)J*-1(t)dt\j*(x), a< x<b.

Therefore, K(x) is positive definite on a<x<b. Now S = KC and

C'= — QS= —QKC and by the determinant equality for first order

linear matrix equations, | C(x)\ =exp { —Jltr (QK)]. Since | C(b)\

= 0,then Jltr(QK)=<».
However, since Q and K are both positive definite on a<x<b then

tr (QK)^\\Q\\\\K\\^(tr Q)(tr K) and by taking the trace of (23),
tr K' = tr (KQK)+tr Q^tr Q{n(tr K)2 + l}. Integration of this in-

equality yields, for a<x<b,

Arctan {ra1'2 tr K(x)} ^ ra1'2 f    tr£> < t/2
J a

and 0<tr K(x) <Ko = (l/n1'2) tan {ra1'2/;^} < oo. Therefore:

tr (QK) :g  I    (tr Q)(tr K) g K0 I     trQ ^ K0w/2(nY'2 < <=o,
a J a J a

which contradicts the earlier conclusion that /* tr (QK) = co. Now,

S(x) = C(x)JlC~1QC*~1 and the theorem is proved.

Corollary 3.2.1. If for equation (3) the coefficients P(x) and F(x)

are both symmetric, positive definite and continuous on a^x< co such

that J" max {trP_1(x), tr F(x)} <ir/2n112 and Y(x) is any nontrivial

(matrix) solution of (3) such that F(a)=0 then both \ Y(x)\ t±0 and

| Y'(x)\ 9^0 for a<x< oo.

Proof. By Theorem 2.1, Y(x)=S*[a, x; Q]R(x), P(x)Y'(x)

= C*[a, x; Q]R(x) where R(x) is nonsingular and Q = CP~1C* + SFS*

on a^x< co. Since P_1 and F are positive definite and []C||2 + ||s||2

= ra, then tr Q(x) ^max {tr P~1(x), tr F(x)} ona^x<«. Also if a

is any nonzero constant (column) vector then, for each x on a ^x < co ,

a*Q(x)a=(C*a)*P~1(x)(C*a) + (S*a)*F(x)(S*a). Suppose that for

some x = x0, C*[a, xa; Q]a = 0 and S*[a, x0; Q]a = 0. But by (10)

CC* + SS*=E and, hence a = 0. Thus a*Q(x)a>0, for every vector

a;^0 and all x on a^x<co, and Q(x) satisfies the hypotheses of

Theorem 3.2. Hence, the corollary follows immediately.

In conclusion, note that Theorem 3.2 follows from Corollary 3.2.1

making them equivalent.
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A NOTE ON THE LAW OF LARGE NUMBERS

HARTLEY ROGERS, JR.

Let {-A7-*}, k = l, 2, ■ • • , be a sequence of independent random

variables with mean EXK = 0, k = l, 2, ■ ■ • . Let Fk(x) be the dis-

tribution function of Xk, k = l, 2, • ■ ■ . We list certain conditions

which may or may not obtain for such a sequence:

(i) 23 j        ^*~"* 0 as » —> oo ;
k—l J \x\zn

1      »       /*
(ii) — 23 j        xdFk —* 0 as m -+ oo;

ft   k-l J \x\<n

1   "    f
(iii)        — 23 |        x2dFk —> 0 as n —> oo ;

n2 k-l J \X\<n

(iv)        — Z) \  \        x2dFk - (   f       xdFk) \ -* 0 as n -> oo.
»2 Jfc-l   W |x|<n W|x|<n /)

Kolmogorov proved in [l] that (i), (ii) and (iv) together are necessary

and sufficient conditions for the classical weak law of large numbers.

In [l, Satz XI] the statement is also made (without proof) that (i),

(ii) and (iii) together are necessary and sufficient conditions for the

classical weak law. This statement has appeared more recently in

various texts and monographs. We show that this statement is in-
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