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J. GIL DE LAMADRID AND J. P. JANS

We consider certain properties of topological rings with identity

which can be deduced from connectedness.

The following two statements follow immediately from Kaplansky

[2, Theorems 1 and 2].

1. A connected compact ring is a zero ring.

2. A connected locally compact ring with identity is a finite dimen-

sional algebra over the reals. In this note we drop the assumption of

local compactness. Most of the results are consequences of the follow-

ing simple lemma.

Let 717 be a topological module over a topological ring A, i.e. M is a

topological abelian group, a module over A, and (a, m)—>am is jointly

continuous.

Lemma 1. 7/ .4 is connected and Mo is a submodule of M then A M0

is in the component of 0 in M0.

Proof. Let moEMQ, then a—>am0 is a continuous mapping of A

onto a connected subset of M0. Since for a = 0 in A, am0 = 0, this sub-

set contains 0.

The following statements follow immediately from Lemma 1:

1. A unital module over a connected ring with identity has only

connected submodules.

2. A connected ring with identity has only connected left (right)

ideals.
3. The only discrete left (right) ideal in a connected ring with

identity is the zero ideal.

We use the definition of covering space and simple connectedness

given by Chevalley [l], and we prove the following theorem which is

in direct analogy to Proposition 5, p. 53 of [l].

Theorem 1. If a ring A admits a simply connected covering space

(S, f) then S can be made into a ring so that f is a ring homomorphism;

furthermore if A has an identity so does S.

Proof. Assume that (S, f) covers A and that 5 is simply con-

nected. Then the product T = SXSXSXS is also simply connected.

Define the continuous mapping fl: T—>A by fl(a, b, c, d) =f(a)f(b)

+f(c) —f(d). Let 0 be an element of 5 contained in/_1(0), and let p

be a fixed element of 5 not contained in/_l(0). The simple connected-
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ness of T then implies there is a unique "lifting" of Q, (a continuous

mapping of fl': T^S such that/ofi' = fi) such that 12'(0, 0,0, 0)=0.

We define -a in 5 to be fl'(/3, 0, 0, a) and a+b to be Q'(0,O, a, -b).

These are continuous operations, 5 becomes an abelian topological

group under them, and/is a group homomorphism of 5 onto the addi-

tive group of A (see Proposition 5, p. 53 of [l]).

We now define a (continuous) multiplication in 5 by ab

= Q'(a, b, 0, 0). Note thatf(ab) =f(a)f(b).
We show first that a0 = 0a = 0 for all a in 5. The two continuous

mappings 6: a—>0 and 0':a—>a0 have the property that / o 6 =/ o 6'

and 6(0) = 6'(0). Thus since S is connected and / is a covering map

6 = 6', aO = 0. Also the two mappings 6 and 6": a-^0a obey/ o 6 =/ o 6"

and agree on a = 0, thus 6 = 6" and 0a = 0. We next show associativity.

The two continuous mappings 2: (a, b, c)—*a(bc) and 2": (a, b, c)

-^■(ab)c from the connected space SX.SX.S to 5 have the property

that/o2=/o2" and 2 and 2" agree on (0, 0, 0). Thus 2=2" and

a(bc) = (ab)c. To show left distributivity use the above argument

applied to the two mappings (a, b, c)—>a(o+c) and (a, b, c)-^>ab+ac

and similarly for right distributivity.

If A has an identity e then the element 0 may be chosen in/-1(e)

and is an identity for 5. This is because the two mappings b—>0b and

b—>b have the same composition with/ and agree on b = 0. A similar

argument shows b0 = b. This completes the proof of the theorem.

As an immediate corollary we obtain

Theorem 2. A ring with identity which admits a simply connected

covering space is already simply connected.

Proof. By Theorem 1, the ring admits a covering ring with identity

and the covering map becomes a ring homomorphism. But the kernel

of this is a discrete ideal and, by the property 3 listed above, must be

zero. Thus the covering map is a homeomorphism.
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