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1. As in [l], 51 will denote a space of points P with a countably

additive, non-negative measure y(E); all sets and functions consid-

ered will be 7-measurable; e will always denote a set of finite measure;

E will be called purely infinite if y(E) = <» and eC-E implies y(e) =0.

X is a length function if \(m) is defined, with O^X(m) fk °° , for every

non-negative function u=u(P), and satisfies:

(Ll) X(w) =0 if u(P) =0 for almost all P.

(L2) \(u) <X(v) if u(P) ^v(P) for all P.

(L3) \(u+v)^\(u)+Xv).
(L4) \(ku)=kX(u) ior all k>0.
(L5) Ui(P) fku2(P) ^ ■ • •  ior all P implies X(sup «„) = sup X(#„).

uE will denote the restriction of u to E, i.e. uE(P) =u(P) if P is in

E, =0 otherwise ;X(E) means X(m) with u(P) = 1 for Pin E, =0 other-

wise; Un will denote min (u, N). X will be called continuous if for every

M,

(L6) X(m) =supe X(m«).

X* will denote the conjugate:

X*(v)l= sup (  j uvdy;X(u) fk l).

It is easily verified that X* is a length function. Of course, if the only

m with X(w) ̂ 1 has X(w) =0, then \*(v) =0 ior all v.

By definition,

(1.1)    X*(z>)=sup (2Z« ini(uv on E)y(E); \(u)fkl, all finite collec-

tions of disjoint E)

with the convention that 0»=0. If \*(vE) happens to be 0 for every

purely infinite E then the same value is obtained in (1.1) when the

E are restricted to sets of finite measure; hence, in this case, \*(v)

= sup,~X*(ve). In particular, X*(n)=sup« \*(v,) if X*(z>) < °o or if S

has no purely infinite sets.

2. X is called reflexive if X**=X, i.e., if X**(w) =X(m) for all u. In

[l] it was pointed out that: (i) X**(w) ^X(tt), X***=X* always, and

(ii) X**=X if X is a levelling length function.

Now we shall prove that for arbitrary length function X and arbi-

trary u:
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(2.1) X(ra)^X**(M)^supeX(w(,) always,

(2.2) X**(w)=sup, X(rae) if X**(m)< oo or if 5 has no purely in-

finite sets.

It follows that X**=X if X is continuous, in particular whenever S

is a-finite.s We shall show by examples in §5 that X**=X does not

always hold so that the Lx spaces defined in [l ] are more general than

the Kothe spaces. A necessary and sufficient condition for the equal-

ity X**=X is given in (4.1) below.

3. For real-valued functions f(P) we write X(/) to mean X(m) with

U(P) = \f(P) | • L2 denotes the real Euclidean, Hilbert or hyper-Hil-

bert space of all / with ||/|| = (f\f(P) \ 2dy) < <x>; U denotes the set of

/in7,2withX(/)^l.

We shall prove (2.1), (2.2) by means of the following steps:

(3.1) If M = sup un with m„ increasing and if X**(«„) =X(m„) for all

ra, then X**(m) =X(m).

(3.2) If un(P)^u(P) for almost all P and if X(m„) g 1 for all ra, then
X(m)^1.

(3.3) If /„(P)-h/(P) for almost all P and if X(/n) g l for all ra, then

X(f)Sl.
(3.4) If /|/-/„12dy->0 and if X(/„) g 1 for all ra, then X(f) ̂  1.
(3.5) U is a closed convex subset of L1.

(3.6) If u is in T,2 and if X(m) < oo, then X**(m) =X(m).

(3.7) If u = ue for some e, then X**(m) =X(m).

Proof of (3.1) to (3.5). (3.1) follows from (L5).

Let vn = infm (u„+m) so that v„ ^ u„ and m = sup vn with vn increasing;

then (3.2) follows from (L5).

(3.3) follows from (3.2) since |/„(P)| ->|/(P)| for almost all P.

(3.4) follows from (3.3) since, for a suitable subsequence, /„(P)

-»/(P) for almost all P.

(3.5) follows from (3.4).

Proof of (3.6). By (3.1) we need consider only all un, i.e. we may

suppose m is bounded.

If X**(m)?^X(m) then X**(w) <X(m) < oo, and if we use m/X(m) in

place of m we may suppose X(w) = 1.

Choose any p>l. Then pu is not in U. Hence there is a closed

hyperplane in L2 which separates pu from [7,4 i.e., for some h in L1

3 Note by W. A. J. Luxemburg. A proof of X**=X for the case S a-finite was found

by me after I had heard that the same result had been obtained by G. G. Lorentz.

Lorentz' proof (unpublished) turned out to be quite different from mine. Professor

Halperin simplified and refined my proof to obtain (2.1) and (2.2) (see [2, pp. 10, 11,

28]).

1 For example, the set of all (p«+/o)/2+/with/±(p«—/0), where/0 is uniquely de-

fined by the requirement: ||jt>« — 7o|| "inf (||p«— g\\; g in U).
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and some real number c,

(3.8) I puhdy > c ^ sup (   I fhdy;f in Uj.

By replacing /s(P) by | h(P) | in (3.8) we may suppose A(P) ^0 for all

P. We may clearly suppose also that h(P) =0 wherever u(P) =0 so

that for every w, fhwdy = supx Jh min (w, Nu)dy.

Let w be arbitrary with \(w) fk 1; then for every N, min (w, Nu) is

in U, and (3.8) implies

(3.9) I  puhdy > sup (  f whdy;X(w) fk 1) = X*(ft).

It follows that 0<X*(&) < oo ; using h/\*(h) in place of h in (3.9) we

obtain:X**(w)>l/p for all p>l. Hence, since X(m) = 1, X**(m) ^X(w).

Thus the assumption X**(m) j^X(m) leads to a contradiction and (3.6)

must hold.

Proof of (3.7). If X**(w) ̂ X(w) thenX**(w) <X(w) and, using (3.1),

we may suppose u is bounded; then u = u, is in L2 and (3.6) implies

that X(m) = oo. Choose a maximal collection of disjoint E with EO,

7(E) >0 and \(uE) < °o ; with e replaced by e— ^2(E) and u replaced

by its restriction to e— ^2(E), we will have the preceding statement

together with: ~X(uB) = °° whenever EO, y(E)>0 or equivalently:

X(E) = oo whenever Ec«. y(-E) >°-

It follows that XO) = oo whenever v(P)y^0 on a set £C« with

7(E) >0; hence X*(e) =0, and X**(w) ^fNudy for every finite A7, since

x*(Ag=o.
But \(u)>0 implies fudy>0; hence X**(m) = °° . This contradicts:

\**(u) <X(u), so that (3.7) must hold.

Proof of (2.1). X**(m) ^sup, \**(ue) =sup«,X(«e), using (3.7).

Proof of (2.2). This follows from (2.1) and the last sentence of §1

(applied to X** in place of X*).

4. We now prove:

(4.1) X**=X if and only if: for each u either (i) X(«) =sup„X(w„) or

(ii) there exists a purely infinite set E = E(u) such that \(uF) = °° for

all FEE, y(F)>0.
Proof of (4.1). Sufficiency. (2.1) shows that X**(w)=X(m) if

X(m) =supeX(«,). On the other hand, if E(u) exists as in (ii) then, as

in the second paragraph of the proof of (3.7), X*(E) =0; hence X**(«)

= CO =X(tt).

Necessity.   Ii X**(«) = X(«) < »,   then   (2.2)   shows  that X(«)
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= supeX(rae). If X**(m) =X(m) = oo and X(«) >supeX(w,) then X**(w)

>sup«X**(i/e); then the sentence following (1.1) shows that \**(ug)

>0 for some purely infinite set G; thus for some v with X*(n)=l

fouvdy>0, implying fauvdy= oo ; then for some e>0, Jsuvdy= oo

where £ = set of P in G for which v(P) ^e. Now this E satisfies (ii) of

(4.1).

5. Examples.

(5.1) X^X** and \**(u)=0 for all u: Let S consist of one point P

with y(P)= °o, \(u)=u(P). Then \*(v)= oo if v(P)^0, = 0 if »«0.

Hence X**(m) =0 for all u.

(5.2) Xj^X** and X**(m) =supeX(we) for all u: Let S consist of a

noncountable collection of indices a, let 7(7i) = number of indices in

E if this is finite, = =° otherwise; and for u = (ua; aES) let X(m)

= sup (Ma)+No—sup (j*,).1 Then for v= (va) :\*(v) = 22v°'< Ior an M>

X**(ra)=sup (ua) =supeX(rae).

(5.3) X=X** but X is not continuous: Let S consist of one point P

with y(P)= oo, X(m)= oo if U9±0. Then \*(v)=0 for all v; X**(m)

= \(u) for all m, but m» = 0 for all e; X(rae)=0; X**(m) 5^sup«X(Me) if

m(P)^0.
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6 If M is a collection of non-negative real numbers, No—sup {M) means inf (k;

OsSAg w and at most a countable number of elements of M^k).


