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1. We shall deal here with systems of differential equations of the

form
2

(1)     yj + oyy,- = efj(yh • • • , y„, yi, • • • , yn, «, 0.     j = 1, 2, • • • , re,

where e is a small real parameter, oi, • ■ ■ , <r„ are real positive num-

bers, and each /,■ is a real valued function periodic in the real variable

t of period 2ir/a), co>0. In a previous paper R. A. Gambill and J. K.

Hale [6] have given sufficient conditions for the existence of periodic

solutions of (1) (and more general systems), whose dominant terms

have periods in a rational ratio with 2ir/w (harmonics, subharmonics,

ultra-subharmonics). Also, a number of examples and applications

were given in [6]. The aim of the present paper is to prove a new gen-

eral statement which contains as particular cases two of the various

theorems proved in [6].

We shall use exactly the same method used in [6]. This method has

been successively developed by L. Cesari, J. K. Hale and R. A. Gam-

bill, in a series of papers concerning boundedness of solutions of linear

differential systems with periodic coefficients [l; 4; 5; 8], cycles of

autonomous weakly nonlinear differential systems [9], and harmonics

and subharmonics of periodic weakly nonlinear differential systems

[6]. The method will be reviewed below so as to make the present

paper independent.

For bibliographical indications on the vast subject we refer to the

papers quoted in the bibliography.

2. Summarization of the results. We shall say that a vector func-

tion/(x, t),f=(fi, ••-,/„), of the real vector x=(xi, • • ■ , xn), and

of the real variable t belongs to the class A [co], co>0, if for every t,

— «></< + °°, each component/, of /is analytic in a neighborhood

27 of x= (0, • ■ • ,0) independent of t, and the power series expansion

of fj in Xi, • • • , xat is convergent in 27, and its coefficients are periodic

functions of t of period T=2tt/w.
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Consider the system of differential equations (1), or, in matrix

form,

y + Dy = e/(y, y, e;t),        (■ = d/dl),

where (a) y = (yi, • • • , y„), /=(/i, ■ • • , /»), P = diag (a\, ■ ■ ■ , <rn),

(b) e is real and ci, • • • , <r« are positive numbers, (c) fEA [co], that

is, for every /,/,• is analytic in yi, • • • , y„, y\, • • • , y„, e for \yj\ < C,

\y3\ <C, I e| <«o, j = l, 2, • • • , n, where C, e0 are independent of t,

and the power series expansions, convergent for the same y,-, yj, e,

have coefficients periodic in / of period T = 2ir/co.

Let m be any integer, O^mgn, and let y = (u,w),u = (yu ■ ■ ■ , ym),

w = (ym+i, • • ■ , y„), a = (ai, ■ • • , an), b = (bi, • ■ • , bn), aj% bj positive

integers, C=(c\, • • ■ , c„), a = (cri, ■ ■ ■ , an). Certain functions

FTj(a, b, c, a, co, e), analytic in e, | e| <e0, will be determined (§4) for

which the following theorem holds:

Theorem. If (A) /,(«, — w, —u, w, e, —t)=fj(u, w, u, w, e, t),

j=l, 2, ■ ■ ■ , m; (B)fj(u, -w, -it, w, e, -t) = -fj(u, w, it, w, e, t),

j = m-\-l, • ■ ■ ,n, and if, for e sufficiently small, the system of equations

at
(2) — 03 + eHi(a, b, c, a, co, e) = at,     I = 1, 2, ■ • ■ , n,

bi

has a solution for some real nonzero c and cr, then (1) has a solution

y(&j t)EA[u/bi ■ ■ ■ bn] with y,-(0, t)=cjcrj1 cos (ajU)t/bj), yj(e, —t)

= Ji(«> t), i = L 2, ■ ■ ■ , m, yj(0, t)=Cj(Tjl sin (ajUt/b/), yy(e, -t)

= ~yj(e, t),j = m + l, ■ ■ ■ ,n.

If ai = ap)/bi and there exists a nonzero c0 such that Ht(a, b, c0, a,

co, 0)=0, 1=1, • • ■ , n, and the determinant,

(3) | dHi(a, b, c0, a, co, 0)/dCj \   7* 0,

then, for e sufficiently small, system (2) certainly has a nonzero solu-

tion c0.

It is interesting to note that condition (3) may be satisfied even in

cases where the Jacobian obtained by applying Poincare's periodicity

condition [3] is identically zero. An example is given in [6, p. 389].

This example will be discussed in more detail in §5.

The theorem above can also be considered as determining the num-

bers ctj when ay, bj, Cj are given. Finally, the same theorem holds even

when / is independent of / (autonomous case). Then system (2) de-

termines relations between the basic "periods," 2irbi/aius, of the dom-

inant terms of the solutions and their "amplitudes," c,-.
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The theorem above for m = re reduces to Theorems (5.3, i) and (5.3,

iii) of [6], and for m = 0 to theorems (5.3, ii) and (5.3, iv) of [6].

It may be pointed out that the functions 77/(a, b, c, a, co, 0) are given

by

f i  rT «*
Hj(a, b, c, <t, co, 0) =- I    fj(y0, yo, 0, t) cos — utdt,

CjT J o bj

j = 1, • • • , m,

(4) ,     ,r
If Oj

Hj(a, b, c, cr, co, 0) = —- I    fj(y0, yo, 0, t) sin — wldl,
CjT J o bj

j = m + 1, • • • , «,

where T = 2irbi • • • b„/u and y0 = (cicrr1 cos aicot/bi, • • • , Cmcr"1

•cos amut/bm, Cm+icr'1 sin am+iut/bm+i, • • • , Cncrii1 sin anut/bn).

3. Review of the method. We will refer here, as in [6], to a system

of first order ordinary equations of the form

(5) z = Az + eq(z, e, t)

where ^4=diag (pi, • • • , pn), Pi, • • • , Pn, are complex numbers,

z=(zi, • • • , zn), 2 = ((7i, • • • , gjv), and g£^4 [co]. First consider the

auxiliary system

(6) z = Bz + tq(z, e, /),

where B =diag (iri, • • • , irN), and each r,- is a rational multiple of co.

Since qEA [co],

(7) q(z, e,t) = 22 *"qw(z, 0,       1^(z, t) £ A [co].
fc=0

Let Sj-k) denote the coefficient of er_1, r = 1, 2, • • • when z in ajl,(z, /)

is replaced by z = x(0>(t) + «x(1) (/) + • • • , where each xu)(t) is inde-

pendent of e. Moreover, let the corresponding coefficient of er_1 in

oy(z, t, e) be denoted by sf\ Since only the case in which each sf,lc) is

a periodic function of < of some period T will be considered, define

(j c(,'fc)        1,/T "">' (r,*'l
exp,-      = M[e      Sj     \,

(8) rf^r = Mli*"*?], j=l,2,--.,N,
c(r)       j-      /c(r) o(r\I      5     = diag (Si , • • • , SN ),

where di, ■ ■ • , oV are nonzero complex constants and M[-] denotes

the ordinary mean value for periodic functions. It is clear that
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(r) _      (r.0) (r-1,1) (l.r-1)

Sj Sj        -\~ Sj -p   •  •  •   -p Sj ,

sr^sr+sr^+'-'+Sj1^,
j = 1, 2, ■ • • , N.

We now define the method of successive approximations as follows:

■2(0) = £«» = rdieintt . . . j dNeiTNl),

■ ZM = 2(0) + eBt  f e-BS £€*jW - ( £e*S<*M3<r-i>Idt

(mod€r+1), r = 1, 2, • • • ,

where 5<*> = (sf, • • ■ , sff), z<r) = x<0) + ex<» + • • • + e**<r>, eB!

= diag (e*n!, • • • , e"^1), and the above integrations are performed

so as to obtain the unique primitive of mean value zero. It is clear

that each z(r) defined by (9) is periodic in t, the period being deter-

mined by the numbers 77. If we replace z(r> by its expression in terms

of the x(i) and equate coefficients of powers of e, we obtain

x(0) = (aVTi(, • • • , dNeiTNl),

(10) ■ x<r> = e8' f e-B'[s^ - (5<1)x<r"1' + • • •

+ 5<'-1>x<1>)S(r)x«»]^ r=l, 2, •••.

It is then shown in [6] that the method of successive approximations

defined above converges to a solution of the system of equations

(11) z=  [B- eh(T, d, t)]z + tq(z, e, t),

where t = (ti, • • • , tn), d=(du ■ • ■ , dN),h = diag (hi, • ■ • , hN),ano\

(12) h(r, d, e) = S^(d) + eS^(r, d) + e2S^(r, d) -\-,

where 5(r)(r, d) is defined by (8). Consequently, the function z satisfy-

ing (11) will be a solution of (5) if the system of equations

(13) irk - ehk(r, d, e) = Pk, k = 1, 2, • • • , N,

has a solution for some pi, • • • , pn and nonzero di, ■ • • , aV.

4. Proof of theorem. If, in (1), we make the transformations

yj=Vtj-i, yj = v2j, v2j-i = (2ia1)-1(z2j-i+z2j), v2j = 2-1(z2j-.i — z2]), then

(1) is transformed into the system of first order equations

(14) z = Az + tq(z, 6, t),

where A =diag («n, — io\, • ■ • , i<rn, —ian) and
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q2j-l(z, €, /)   = /,[(2itri)-1(2i + Zt), ■ ■ ■  , (2j'<r„)-1(Z2n-l + Z2n),

(15) 2-x(zi - z2), • • • , 2-'(z2»-i - z2n), t, t],

.    qa(z, e, t) = - qtj-i(z, «, 0. j = 1. 2, • • • , re.

It is then shown in [6, pp. 365-368] that if the numbers dk, Tk are

chosen so that d2j-i = — d2j ( is the complex conjugate), rjy-i = a/u/bj,

t2j= — T2/_i, where a/, 6/ are positive integers, the function z defined

by the above algorithm (9) leads to real functions Vk, k = 1, 2, • • ■ , 2«,

which are periodic in t of period T=2irbi ■ ■ ■ b„/o). Furthermore, it

is shown that S2j-i = S2j for every r and, therefore, from (12), &2/-i

= h2j,j = l, 2, • • • , re. Consequently, we will obtain a periodic solu-

tion of (1) if we can find nonzero numbers di, d3, • • ■ , d\n-i,

0i, ■ • • , 0n which satisfy the system of equations

(16) iajO>/bj — ehtj-i = ivj, j = 1,2, ■ ■ ■ , n.

In general, one can solve these 2re equations (7*s/_i may be complex)

for combinations of the numbers dx, dz, ■ ■ ■ , d2n-i, Oi, ■ • • , <rn to

obtain periodic solutions of (1). However, to obtain solutions of the

type specified in the theorem, further restrictions must be imposed

on the numbers di, d3, • ■ • , d2n-i. We shall need the following lemma,

which generalizes Lemmas (5.2, i), (5.2, ii) of [6].

Lemma. Suppose f satisfies conditions (A) and (B) of the theorem. If

we apply the preceding algorithm (9) to the auxiliary system of (14) with

d2j_i = icj, j=l, 2, ■ ■ ■ , m, d2k-i = Ck, k = m + l, • • • , re, where each

ci, 1 = 1, 2, ■ ■ • , re is a nonzero real number, then x$_l( — t)=x$(t),

$-,(-*) =4}-iM.  s%\t) = -s%li(-t),  4>_, = 5«,   7 = 1,   2, •• .,  m,
X2k- l (      t) =      X2k (t), S2k_ i (      t) =      S2k-1 (t), S2t (t) = S2t-1 (— t) , S2t_ ! = s2t,

k = m + l, ■ ■ ■ , re, r = 0, 1,2, • • ■ , where the x,(r) are defined by (10).

Proof. We shall first prove by induction that X2?-i( — t)=xjy(t),

/=1, 2, • • • , m, X2t-i( — t) = —x£t(t), k = m + l, • • • , re and all r. By

our choice of the numbers di, the assertion is clearly true for r = 0.

Assume the assertion true for r = 0, 1, • • • , v—1 and all/, k. Then

4U(- t) + x£>(- o = 4^(0 + x«(/),   *#-.(- o - 4}(- t)
= -[4}-l(t)-x$(t)],j=l,2, ■ ■ ■ ,m,r = 0, 1, • • • , v-1, *&_,(-*)

+42(-/) = - [xtlMt) +*8«)L *2_i(-fl-*&(-/)=x«_1(o-x%(t),
k=m + l, • • • ,«, r = 0, 1, • • • ,v— 1. Consequently, from conditions

(A), (B), and formula (15), we have

(iy)     h*i-i[z(r)(-t), «, -i] = }1M[«W(<), «, *], / = 1, 2, • • • , m,

■ q2k-i[zM(-D, «. ~t] = - q2k-i[zM(t), e, /], k = m + 1, • • • , »,

r = 0, 1, 2, • • • , v - 1.
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Since s2jtli(t) is the coefficient of er in the expansion of a2/_i(z(r), e, t),

we have

.... (stj-i(—t) = sti-i(t), j = 1,2, ■ ■ ■ ,m,
(18) S    (r) (r)

(stk-i( — l) = — s2k-i(t),    k = m + 1, • • • , n, r = 1, 2, • • • , v.

Furthermore, since a2>_i= —ay, it follows that s2j-i = — 4? and

.....      /*»i-i(-<) = - stj (t), j = 1, 2, • • • , m,
(19) -s (r) (r)

Vs2k-i( — I) = j2A (t), k = m + 1, ■ • ■ , n, r = 1, 2,  ■ ■ ■ ,v.

From the preceding relations we have

„(<■) 1 CT   -•>„-,<   (r)
02,-1 = —- I    e stj-i(t)dt

a2,_ii J 0

=  - —— I      e    s2i (t)dt
d2jl J 0

= ",—; I      e       s2j (t)dt
d2jl Jo

1      CT -"ijt co
=  ~ -r~z I     e     s2j (t)dt

d2jl Jo

=  -S2j', j = 1,2, ■■■ ,m,r  = 1,2, ■■■ ,v.

Similarly, S2k-i= —S^, k = m-\-l, ■ • • , n, r = l, 2, • • • , v.  From

(10),

(»)    /        .s -»rij—1«    F    iraj— l<r   (»)    , .
x2,_i( — 0 = — e I e [stj-i( — t)

— {Sti-iXtj-i ( — t) + • • ■ -\- Sti-iXtj-i( — t)}]dt

= eiTV' f e-'^VJO)

-{S%xlr1\t)+---+St?x%(t)}]dt

(«)
= xtj (t), j = 1, 2, • • • , m.

Similarly, x^-1( — t) = —x2%(t), k=m + l, • • • , n, and the induction

on the xjr) is completed. If the assertion is true for x,(r) for all r, then

the other relations must also hold for all r and the lemma is proved.

Using the above lemma and the fact that Sy-i = S2i for I

= 1, 2, • • • , n and all r, it follows that each S^-i and, therefore, from
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(12), each A2!-i is purely imaginary. By using the above transforma-

tion formulas, it follows that the solution obtained in this manner has

the properties mentioned in the Theorem. Furthermore, if we put

Hi(a, b, c, a, co, e) =I(h2i-i), 1=1,2, ■■■, n and apply (8), then the

Hi satisfy (4), and the theorem is proved. The details are as in [6,

pp. 368, 375], and we refer to this paper for the sake of brevity.

5. Example. Consider the system of differential equations

2 3 2
x + ciX = tax + eA cos t-x + eBx  + tyxy ,

(20) 2 ii
y + o~2y = toy + eB cos oil- y + epy  + tvx y,

where e>0 is a small parameter, and a, (3, y, S, u, v, A, B, ai, a2 are

real constants and co is a rational number. This is the same as example

9.1 of [6]. We discuss this example again in order to show how more

results may be obtained using the previous theorem.

Let us make the transformations in §4 and apply the preceding

algorithm to the auxiliary system of (20), taking the zeroth approxi-

mation to be (aie"1', — aie~ir'(, a2eir-'1, — a2e_iT2') where Ti = ki/mi,

T2 = k2a/m2. Following the same discussion as in [6], it is easy to see

that for ri^r2, ri^l/2, t2^co/2,

5i(1> = (2ienf *[« + 3f5(4o-\yl | ai \* + y(2o\)~l1 a2 f],

S3    = (2 ia2)    [8 + v(2<n)     \ ai\   + 3p(4a2)     | a2 [ ]

and S(i\ S™ are purely imaginary for every ai, a2. Consequently, the

classical Jacobian vanishes. However, since system (20) satisfies the

conditions (A) and (B) for m=Q, 1, 2, we know from the preceding

lemma that for any ai, a2 purely imaginary, ai purely imaginary, a2

real, or ai, a2 real, the real parts of the determining equations (16), try

— eS2f_i — e2S^-i— • • • =io-j, j=l, 2, are identically zero and, thus, if

ffj = Tj,j=l, 2, then the determining equations are S™ + eSf* + ■ ■ ■

= 0, Sl"-r-eSl®-r- ■ ■ • =0. These equations have a real solution

/(I «i I "I1)* = - 4(3M<* ~ 475)(9Mi8 - 16Ty)_1 + 0(e),
(21) <   i      i   -ii _i

l( | «21 fi )   = - 4(3/36 - 4va)(9a& - 16y^)     + 0(e),

provided that e is sufficiently small and the right hand members of

(21) are >0. This condition is certainly satisfied for some values of

the constants in (20). If we interchange the two equations in (20),

then conditions (A) and (B) are again satisfied forw = l. Thus, for

a2 purely imaginary and ai real, the conditions of the preceding lemma

are satisfied and the equations (21) will have a solution for some
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a, B, 7, o, p, v. Consequently, by the theorem, there are four different

types of periodic solutions (x, y) of (20) each having the same ampli-

tude for e = 0; namely (i) x, y even, (ii) x even, y odd (iii) x odd, y

even, (iv) x, y odd.

The exceptional cases ti9*t2, ti^1/2, t29*u/2 may be treated in

the same manner except (21) will contain the constants A and B.

For the autonomous case, i.e., A =B=0, the preceding discussion

applies if T\ = ki/mi, r2 = k2u/m2, ti j*t2, co rational and one obtains the

same relations (21) for | ai\, | a2|. Therefore, for some values of a, B,

y, 8, p, v, and A =B=0, there are also four periodic solutions of (20)

each having the same amplitude for « = 0.
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