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and hence lim sup (M(r)/p(r)) —1, which completes the proof of the

theorem.
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AN ELEMENTARY PROOF OF THE CLOSURE IN L  OF

TRANSLATIONS OF c*t  AND THE BOREL
TAUBERIAN THEOREM

H. R. PITT

It is well known that the Tauberian Theorem1 for Borel summation

can be deduced easily from the closure of translations of e~x in

L(— oo, oo), this last result being a special case of Wiener's General

Tauberian Theorem.2

A simple proof of the Littlewood Tauberian Theorem for Abel

summation has been given by Karamata3 by a method which depends

on the fact that the closure theorem for the Abel kernel is closely

related to the Weierstrass theorem on polynomial approximation to

arbitrary functions and can be proved by elementary means. This

suggests that it might be of interest to find elementary proofs of the

closure theorems, and the associated Tauberian theorems, for other

kernels by using their specific properties rather than Wiener's general

theorem. We show here that this can be done very simply for the

Borel kernel e~x .
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Since

f(x) = l.i.m. (-)      f"e-Wf(y)dy

when f(x) is in L, it is plainly enough to show that, for any positive

B, e~(l+ei)x can be approximated in L by linear sums of translations

of e~x , and this follows at once from the following.

Lemma. If 0</3<l, and e>0, we can define

(1) P(x) = E Ake-^-^
*-i

with constants Ak, ak so that

| e-(i+0)x» _ Pfx) \dx<e.
-oo

Proof. It is plain that

Pn(x) = e-**[2 - cosh x(2^/w)1'2]"

is a function of the required type (1). But

Pn(x) = e-<1+<J>*2{e<»*i/»[2 - cosh x(2^/»)1'2]}"

= <r<l-H»*'[l + 0(xi/n)] for | x|   ^ n1'2,

and since | 2 —cosh y\ ^e"1'2 for all y, we have also

| Pn(x) |   ^ e—!d-«

for all x. Hence, if nl'2>B>0,

C I e-o+zs)** _ p^) | da. ^ 2   f   [e-ci+3)x2 + e-«-f»**]dx + 0(Bb/n),

and (2) follows by choice of B and n.
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