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1. Introduction. Consider the vector differential equation

(1) / = A(x)y,

where A(x) =\\Aij(x)\\ is an nXn matrix with elements that are com-

plex-valued continuous functions of the real variable x on a given

interval A. For brevity a nonsingular mXm matrix F(x) with con-

tinuously differentiable elements on A will be termed an admissible

transformation matrix; for such a F(x) the equation (1) is equivalent

under the transformation y — Tu to the equation

(2) u' = B(x)u,    where    B = T~\AT - T').

The remarks of this note are concerned with a result on trans-

formations stated below as Theorem A, and are two-fold in nature:

firstly, there are comments on the relation of this theorem to results

of Perron [3] and Diliberto [l; 2], in the hope of correcting a mis-

understanding that has arisen in this regard; secondly, there are re-

marks stressing two general properties of admissible transformation

matrices which together afford a very elementary matrix proof of

Theorem A.

Matrix notation will be used throughout, with a vector considered

as a one-column matrix. If M is a matrix then the corresponding

transpose and conjugate-transpose matrices are denoted by M and

M*, respectively. The symbol \y\ will be employed for the norm

(y*y)112 of a vector y. For Af = ||Afy||, (i, j = l, ■ ■ ■ , n), the cor-

responding lower case bold-face letter m,- will denote the jth column

vector of M. In particular, if M is a nonsingular mXm matrix, and N

is the unitary matrix whose sequence of column vectors tii, • • • , nn

is the set of vectors obtained by applying the Gram-Schmidt ortho-

normalization process to the sequence of column vectors aii, ■ • ■ , mn

of M, then we shall write simply N — gs[M]. A nonsingular matrix

Y(x) whose column vectors are solutions of (1) will be called a funda-

mental matrix for (1). A matrix M(x) will be termed "bounded on A"

whenever its individual elements are bounded functions on this inter-

val.
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Theorem A. If Y(x) is a fundamental matrix for (1), and T(x)

= gs[Y(x)], then the corresponding matrix B(x) of (2) is such that:

(i) B(x) is upper-triangular, i.e., Btj = 0 for i>j;

(ii) if A (x) is bounded on A then B (x) is bounded on A;

(iii) the diagonal elements Bn(x) are real-valued.

2. Comments on Theorem A. Perron [3] considered a differential

system that in the above notation becomes y'=—yF(x). When

phrased for the above equation (1) Perron's Theorems 1 and 2 state

that if A (x) is bounded on A then there exists a bounded admissible

transformation matrix T(x) for which F_1(x) and T'(x) are also

bounded and such that the matrix B(x) of (2) is upper-triangular

and has real-valued diagonal elements; moreover, if A(x) is real-

valued then T(x) may be chosen real. In terms of a given fundamental

matrix Y(x) Perron defined by certain explicit determinantal for-

mulas a matrix, denoted here by F(x), and then by rather formidable

computations showed successively that the corresponding B (x) is

upper-triangular, F(x) is unitary, and F'(x) is bounded. Although

Perron makes no comment on the matter, his explicit formulas con-

stitute a determinantal form of the Gram-Schmidt orthonormaliza-

tion process. That is, in proving his stated theorems Perron actually

established the result of Theorem A, so that this result should be

credited to him.

Undoubtedly the failure of Perron to point out the character of the

transformation matrix actually occurring in the proofs of his theorems

has led to some lack of appreciation of his results. For example, Theo-

rem 1 of Diliberto [l] states that if A(x) is real-valued then there

exists an orthogonal admissible transformation matrix T(x) such that

the matrix B(x) of (2) is upper-triangular, and that B(x) is bounded

whenever A(x) is bounded. Thus for real A(x) this theorem of Dili-

berto goes beyond the stated Theorems 1 and 2 of Perron [3],

whereas, in line with the above remarks, the result actually estab-

lished by Perron in the proofs of his theorems includes Diliberto's

theorem as a special case. It is to be remarked that in terms of a real-

valued fundamental matrix Diliberto's transformation matrix, here

denoted by T(x), is defined as gs[F(x)]; the upper-triangular char-

acter of the associated B(x) is obtained by a relatively simple vector

argument, and boundedness of B(x) is deduced from the property

that boundedness of A(x) implies boundedness of T'(x). As to the

proof of this last property Diliberto is incomplete, in that he gives

details only of the proof of the boundedness of the first column vec-

tor t{ of T', with no indication as to how one might proceed with the
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remainder of the proof. Actually one may proceed by induction to

show that

1       r
ti = Ati - — ti[ti*(A + A*)ti],

(3) '-1 1
t'i = Ati-}2 tk[tk*(A + A*)tj] - - tj[tf(A + A*)tj],

ju-i 2

(j = 2, • • • , m),

where it is to be understood that tk* = (tk)*. The details of such proof

are rather tedious, although in the opinion of the author it is prefer-

able to the proof of Perron [3] for the corresponding result. Recently,

by a simple vector argument Diliberto [2] has given specific formulas

for the elements of the matrix of his Theorem 1 corresponding to the

matrix B(x) of (2), from which conclusion (ii) is immediate; for the

more general case discussed here the formulas corresponding to those of

Diliberto are

(4) Bu(x) = — tf(A + A*)U       Bij = t*(A + A*)t,- for i < j.

It is to be remarked that relations (4) are equivalent to the above

equations (3), since T is nonsingular and TB=AT—T' by (2).

3. A matrix proof of Theorem A. In the following proof of Theorem

A the whole argument is of a matrix character that reduces computa-

tional detail to a seeming minimum, while it also highlights two basic

properties of admissible transformation matrices that are of interest

in themselves. This proof formed part of a paper presented to the

American Mathematical Society, (see Reid [4]), although subse-

quently the paper was not submitted for publication to any journal.

Lemma 1. Let Si be a class of nXn matrices such that; (a) (R is closed

under multiplication; (fS) if ME<R, and is nonsingular, then — Af_1 G &;

(7) if the elements of M(x) are continuously differentiable on A, aMa"

Af(x)G<R/or xGA, then M'(x)E<Rfor xGA. i/ Y(x) is a fundamental

matrix for (1), aM^ F(x) is an admissible transformation matrix such

that Y~l(x)T(x)E(Sifor xGA, then B(x) of (2) is such that B(x)E<&

for xGA.

To prove Lemma 1, one need note only that if T= Y~lTE& for

xGA, then T= FT and F=T-1F-1(- YT')=-T^T'EM for xGA.

Lemma 2. // F(x) is an admissible transformation matrix, then the
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hermitian matrix W=T*T satisfies with B(x) of (2) the matrix differ-

ential equation

(5) WB + B*W +W'= T*(A + A*)T.

Indeed from (2) one has WB = T*AT-T*T', from which B*W

= T*A*T—T*'T, and (5) is immediate.

The proof of Theorem A consists in noting that F(x) =gs[F(x)] is

of the form T(x) = Y(x)T(x), where the elements of T(x) are con-

tinuously differentiable, and for each x£A the matrix T(x) belongs

to the class (R of upper-triangular matrices with real diagonal ele-

ments. Such a class (R clearly possesses properties (a), (B), (y) of

Lemma 1, and hence conclusions (i) and (iii) of Theorem A hold.

Moreover, as T(x) is unitary (5) of Lemma 2 becomes

(6) B + B* = T*(A +A*)T;

in view of (i), (iii) the matrix equation (6) is equivalent to the

formulas (4), and thus conclusion (ii) holds. It is to be emphasized

that for real A (x) and real orthogonal F(x) the above matrix deriva-

tion of (6) is equivalent to the vector argument of Diliberto [2].

4. Additional remarks. Conclusions (i), (iii) of Theorem A and the

relations (6), or (4), for the elements of the matrix B(x) corresponding

to F(x) =gs [ Y(x) ], together with the fact that if y, u are solutions of

(1), (2), respectively, related by y = Tu then \u\ =\y\, imply the

following basic result: for any estimate on the growth of the norm

of a solution of (1) in terms of bounds for the elements of A(x)

there is a corresponding estimate on the growth of the norm of a solu-

tion of (1) in terms of bounds for the elements of the hermitian matrix

A(x)+A*(x). In particular, if h(x) is such that |??*[;l(x)-M*(x)]r|

^2»(x)|?7| |fI for arbitrary vectors 17, f, then the matrix B(x) of

Theorem A satisfies: |5<t(x)| ^ h(x)/2; |73,y(x)| ^ h(x), i < j;

\r)*[B(x)+B*(x)]{\ £A(*)|ij| |f|  for arbitrary 77, f.

For a general admissible transformation matrix 7\x) that is unitary

one may show that the B(x) of (2) is such that the real part of the

trace of B(x) is equal to the real part of the trace of A(x). This result

follows from the argument of Perron [3] used in the proof of his Theo-

rem 3, or may be established in a manner similar to that employed by

Diliberto in the proof of Lemma 4 of [l]. This result is as strong as

one may obtain in the indicated direction, for if 0y(x), (j= 1, ■ ■ • , n)

are continuously differentiable real-valued functions on A, then T(x)

= ||S,j exp [( —l)1/20j(^c)]|| is a unitary admissible transformation

matrix with the elements of the corresponding matrix B(x) of (2)

given by Bij=Aijexp [(-iyi2(9j-di)]-8ij(-iyi2d'j(x).
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AN IRREDUCIBLE UNITARY REPRESENTATION OF A
COMPACT GROUP IS FINITE DIMENSIONAL

PAUL KOOSIS

This note contains a proof of the statement included in the title.

The result is certainly known; Anna Hurevitsch [l] proves it using

the theorem of Peter and Weyl, under the assumption that the group

satisfies the second axiom of countability. It would perhaps neverthe-

less still be desirable to have at hand a short proof which uses the

minimum amount of machinery, then the Peter-Weyl theorem, as

well as the rest of the representation theory for compact groups

[2, Ch. IV] would follow directly from the classical work of Gelfand

and Raikov [3] on the unitary Hilbert space representations of a

general locally compact group. Since Cartan and Godement [4] have

already shown how the theory of abelian locally compact groups

follows from the general one of Gelfand and Raikov, one would have

available a rather unified treatment of the two branches of topological

group theory which have been most extensively studied, a unity

which is not so apparent in existing expositions of the subject (cf.

[5]).
Such a proof is given here. It was worked out some time ago, in

1950, but its publication, put off until now, is maybe yet worth while

in view of the above considerations.

(The referee has called my attention to a proof similar to the one

given here, save that the condition of complete continuity used below

is replaced by that of being an operator of Hilbert-Schmidt type. It
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