
ON REGULAR GROUP RINGS

MAURICE AUSLANDER1

Let G be a multiplicative group, K a commutative ring with unit,

and K(G) the group ring of G with respect to K. We say that K(G)

is regular if given an x in K(G), there is a y in K(G) such that xyx = x.

Using a homological characterization of regular rings which was found

independently by M. Harada [2, Theorem 5] and the author, we

prove that if G is locally finite, then K(G) is regular if and only if K

is regular and is uniquely divisible by the order of each element in G.

More generally we show that if K(G) is regular, then G is a torsion

group and K is a regular ring which is uniquely divisible by the order

of each element in G. A nonhomological proof of these results has

been given by J. McLaughlin (unpublished). In conclusion, we show

that if G is a commutative group and K is a field of characteristic

not dividing the order of any element in G, then the weak global di-

mension of K(G) equals the rank of G. For the most part we follow

the conventions and notations in [l].

Let R be a ring (with unit) and A a left i?-module. The weak left

dimension of A is defined as follows (see [l, Chapter VI, Exercise 3]):

— 1 :£ w. 1. dimi} A ^ oo

where w. 1. dims A <n if and only if Tor? (C, A) = 0 for all right R-

modules C. Since the Tor? (C, A) are half exact functors of C which

commute with direct limits, it follows from [l, V, Exer. 9] that we

may restrict C to be of the form R/I where / is a right ideal in R. For

a right i?-module C, we define w. r. dim^ C similarly.

The weak global dimension of R is defined as follows:

0 ^ w. gl. dim R g <x>

where w. gl. dim R<n if and only if Torn =0. We have

w. gl. dim R = sup w. 1. dimje A = sup w. r. dim« C
a c

= supw. 1. dim R/I = supw. r. dim R/J,
I J

where A and C range over all left and right i?-modules respectively,

and / and / range over all left and right ideals respectively. It follows

therefore that the w. 1. dim R<n if and only if Tor? (R/J, R/I)=0

for all left ideals I and right ideals /.
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Theorem 1. For a ring R (with unit), the following statements are

equivalent:

(a) R is regular,

(b) For every left ideal I and right ideal J in R, we have J I = JI,

(c) w. gl. dim P = 0.

Proof. (a)=>(b). It is clear that JC\IDJI. Let x be in JC\I. Then

there is a y in R such that xyx = x. Since xy is in J and x as in 7, we

have that x = xyx is in JI.

(b)=>(a). Let x be in R. Since x is in xRC\Rx = xRx, there is a y

in R such that xyx = x.

(b)<=*(c). By [l, Chapter VI, Exercise 19] we know that

Tor? (R/J, R/I) = jm/JI.

Therefore the w. gl. dim P = 0 if and only if J(~\I = JI.

Proposition 2. Let Rbea subring of the ring S. Suppose w. r. dimjj S

= 0. Then for all left R-modules A and all right S-modules C we have

w. 1. dim« A = w. 1. dims S ®r A,

w. r. dimB C ^ w. r. dims C.

Further, if S considered as a two-sided R-module contains R as a

two-sided direct summand, then for all left R-modules A

w. 1. dimB A = w. 1. dims 5 ®r A

and thus
w. gl. dim S = w. gl. dim R.

Proof. Since w. r. dim« 5 = 0, we have by [l, Ch. VI, 4.1.1] that

Tor" (C, A) « Torf (C, S ®R A)

for all n^O. The first two inequalities follow immediately from this

isomorphism.

Suppose D is a right P-module. Then C = D®RS is a right 5-mod-

ule. Since S as a two-sided P-module contains R as a two-sided R-

module, we have that D is isomorphic to a direct summand of C

when C is considered as a right P-module. Since Tor* commutes with

direct sums we have that Tor* (D, A) 9*0 implies that Torf (C, A)

7*0. Therefore, we have w. 1. dimB A =w. 1. dims S®RA. The rest

of the proposition follows from the definition of weak global dimen-

sion.

Proposition 3. Let G be a group, G' a subgroup of G, and K a com-
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mutative ring. Then we have

(a) K(G) is a free left K(G')-module and thus

1. dimes') K(G) = 0 = w. 1. dim*^) K(G).

(b) K(G) is a free right K(G')-module and thus

r. dimx(G') K(G) = 0 = w. r. dimj^G') K(G).

(c) K(G), considered as a two-sided K(G')-module, contains K(G') as

a two-sided direct summand.

Thus if we set R = K(G') and S = K(G), the results of Proposition 2

remain valid.

Proof, (a) It is easily seen that any system of representatives for

the left cosets of G' in G, is a basis for K(G) considered as a left

K(G') -module.

(b) Analogous argument to that used in (a).

(c) We may assume that F = G — G' is not empty. Since G'F=FG'

= F, the iC-submodule generated by F in K(G), which we will denote

by K(F), is a two-sided 7C(G')-submodule of K(G). It is clear that

K(F)r\K(G') =0. Thus K(G') is a two-sided direct summand of K(G).

We define the ring epimorphism e: K(G)—>K by e(22kigi) = XX-
This homomorphism is called the unit augmentation. From now on

we consider K as a two-sided 7<L(G)-module as follows: xk = e(x)k and

kx = ke(x) for all k in K and x in K(G).

Proposition 4. Let K be a left K(G)-module. Then we have

w. gl. dim K = w. gl. dim K(G) = w. 1. dimK(0) K + w. gl. dim K.

Proof. The first inequality follows from Proposition 3 by setting

G' = {1}. Thus in proving the second inequality, we need only con-

sider the case where both w. dim^o K = r and w. gl. dim K = s are

finite. Suppose A and B are right and left i£(G)-modules respectively.

Let

0 -> Xs -* Xs_i -*-* Xo -» A -* 0

be an exact sequence of right K(G)-modules where the Xi are K(G)-

projective for i = 0, • ■ ■ ,5 — 1. Then we have by [l, Chapter V, 7.2]

that

(1) Tor^+r (A, B) « Tor^(0>(X„ B)

for all^>>0.
Since 7C(G) is a projective 7C-module, each of the Xt,i=l, ■ ■ • ,s — 1,
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is a projective module when considered as if-modules. Applying [l,

Chapter V, 7.2] again we have

Tor*+! (A, B) « Tor* (X„ B)

for all p>0. Since w. gl. dim K = s, we have Tor* (X„ B) = 0 for all

p>0. Therefore it follows from [l, Chapter XV, 7.6a] that

(2) Tor£(<7)(X, ®K B, K) « Tor* (0>(X„ B)

for all p>0, where X,®KB is the right X(Cr)-module defined by

(x®b)g = (xg®g_1b) for all x in X„ bin B, g in G. Since w. dim^o if

= r, we have Tor*ce> (X,®KB, K) = 0 for all £>r. Thus it follows

from (1) and (2) that TorfG) (A, B)=0 for all n>s+r. Therefore

w. gl. dim K(G) =s-\-r.

Proposition 5. Let G be a group and (Ga) a directed family of sub-

groups of G such that G is the direct limit of the Ga. If A is a left K(G)-
module, we have

w. 1. dimK((j) A = sup w. 1. dimK((ja) A.

From this it follows that

w. gl. dim K(G) = sup w. gl. dim K(Ga).

Proof. Since G is the direct limit of the Ga, it follows that K(G) is

the direct limit of the K(Ga). By [l, Chapter VI, Exercise 17] we have

Torfm (C, A) = lim Torf(Ga) (C, A)  (direct limit)

for all m and all right ^(G^-modules C and all left if(G)-moduIes A.

Therefore we see that w. 1. dimx(G) A ^jsupea w. 1. dimK(Gay A. On

the other hand, we know by Proposition 3 that for each Ga,

w. 1. dimxcG) = w. 1. dimKiajA.

This establishes the first equality. A similar argument proves the

second equality.

Proposition 6. Let G be a locally finite group. Then the following

statements are equivalent:

(a) w. 1. dimX(0) K = 0;

(b) w. 1. dimX(o K< oo ;

(c) K is uniquely divisible by the order of each element in G.
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Proof. (a)=*(b). Obvious.

(b)=>(c). Let G' be a cyclic subgroup of G of order n. Since the

cohomology groups of a group depend only on the group and not on

the ground ring K (see [l, X, 3.1]), we have by [l, XII, 7] that

Tor£(G,) (K, K)=K/nK (for all a>0) and Torgf (K, K) is the sub-

group of K consisting of all k such that nk — 0 (for all q > 0). By Propo-

sition 3, we know that w. 1. dimX((j) K^w. 1. dimx(G') K. Therefore

Tor8<<7) (K, K)=0 for all o>0, which means that K is uniquely

divisible by n.
(c)=*(a). Let G' be a finitely generated subgroup of G. Then G' is

a finite group whose order we will denote by n. Define the K(G')-

homomorphism /: if—>if (C) by f(k) = (k/n) S»e<? £• Then we have

K—*fK(G')—*'K and e/ is the identity map of K into K. Thus X is a

direct summand of K(G') and therefore w. 1. dimjccc) if = 0. Since G

is the direct limit of all the finitely generated subgroups G' of G, we

have by Proposition 5 that w. 1. dimx<G) if = 0.

Combining Propositions 4 and 6 we have

Theorem 7. // G is a locally finite group and w. 1. dimX(ff) if < oo,

<AeM

w. gl. dim K(G) = w. gl. dim if.

In particular, K(G) is regular if and only if K is regular and is

uniquely divisible by the order of each element in G.

Lemma 8. i"/ G is an infinite cyclic group, then w. dimX(0) K = l.

Further, if K is a regular ring, then w. gl. dim if (G) = 1.

Proof. Let e: K(G)—>if be the unit augmentation. If g is a genera-

tor for G, it is easy to show that 7(G) =Ker e is a free left K(G)-

module with basis (g — 1). Thus the sequence

0 -* K(G) ̂  K(G) -> if -> 0

where/(x) =(1— g)x, is a projective resolution of if. It follows that

w. 1. dimX(0) K=l. Since Torf(ffj (if, if) = Ker (K(G)<8>Kl<n K

-^>K(G)®K(G-> K)=Kt*0, we see that w. 1. dimK<G)if = l. The rest

of the lemma follows from Proposition 4.

Theorem 9. If K(G) is a regular ring, then G is a torsion group and

K is uniquely divisible by the order of each element in G.

Proof. If G' is an infinite cyclic subgroup of a group G, we have by

Proposition 3 and Lemma 7 that w. gl. dim if (G) ̂ w. gl. dim K(G')

^w. I. dimxtcj') if = 1. Thus if if(G) is a regular ring, G is a torsion
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group. Since K(G) is regular, we have that w. I. dimx(G) K = 0. Apply-

ing Proposition 6, we have the desired conclusion.

Proposition 10. Let G be a finitely generated commutative group and

K a Noetherian ring. Then K(G) is a Noetherian ring.

Proof. Trivial.

Proposition 11. Let G be a finitely generated commutative group and

K a field. Then we have

w. gl. dim K(G) = w. 1. dinix^) K = dimX(G) K,

where dimx(<?> K stands for the projective dimension of K over K(G).

Proof. The first equality follows from Proposition 4. The second

equality follows from the fact that for Noetherian rings the weak

dimension of a finitely generated module equals the projective dimen-

sion [l, VI, Exer. 3].

Proposition 12. Let G be a finitely generated commutative group

whose torsion subgroup has order n. If K is a field of characteristic p

not dividing n, then

w. gl. dim K(G) = rank ofG.

Proof. By induction on r =rank of G. If r = 0, then by Theorem 8.

K(G) is regular i.e. w. gl. dim7C(G)=0. Suppose r = ife + l^l. Then

G = G'XG" (direct product) where G" is infinite cyclic and G' has

rank k. By [l, XI, 3.2] we have

dhriK(o')®KK{G")K ®k K = dim^o') K + dimK(<?") K.

Since K(G') ®K K(G") = K(G) and K®KK = K, we have by Propo-

sition 12,

w. gl. dim K(G) = w. gl. dim K(G') + w. gl. dim K(G").

By Lemma 9 we have w. gl. dim K(G") =1. Since G' has rank k and

the torsion subgroup of G' is the same as the torsion subgroup of G,

we have w. gl. dim K(G') =k. Thus w. gl. dim (G) =k + l =rank of G.

Theorem 13. If G is a commutative group and K is afield of char-

acteristic not dividing the order of any torsion element in G, then

w. gl. dim K(G) = rank ofG.

Proof. Since G is the direct limit of its finitely generated sub-

groups, Ga, we have by Proposition 5 that w. gl. dim K(G)

= sup(?a w. gl. dim K(Ga). The theorem now follows from Proposition

13.
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A CHARACTERIZATION OF SOME METACYCLIC GROUPS

EUGENE SCHENKMAN1

Szasz [l ] has recently shown that a group is cyclic if and only if it

satisfies condition (A) below.

(A) Every cyclic subgroup of the group is for some positive integer

k the subgroup generated by the £th powers of the elements of the

group.

We shall extend this idea here to show that a metacyclic group

whose commutator subgroup has order relatively prime to its index

is characterized as a solvable group satisfying condition (B) below.

(B) Every member of a composition series (i.e. every subinvariant

subgroup) is for some positive integer k the subgroup generated by

the &th powers of the elements of the group. (If G denotes the group,

the subgroup will be denoted by G(k)).

If the hypothesis of solvability is not included it is easy to check

that many completely reducible groups and their extensions, (includ-

ing, for example, all simple groups and all symmetric groups) satisfy

condition (B). We were unable to characterize these.

We first list some of the properties of a group satisfying condition

(B).
(1) Every subinvariant subgroup is a fully invariant subgroup of

G; that is, it is mapped into itself by all endomorphisms of G.

For this is true for all G(k).

(2) Every homomorphic image of a group satisfying (B) itself also

satisfies (B).

For the generators of corresponding normal subgroups are &th
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