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1. Introduction. In an earlier paper [5] the author characterized

dendrites and trees in terms of partially ordered spaces, and this char-

acterization has been employed [2; 6] to give an order-theoretic

proof of the well-known theorem that every tree has the fixed point

property. In the present note three more characterizations of trees

are given; in §2 they are shown to be precisely a special class of mobs

and in §3 order-theoretic and purely topological formulations are

given. A notion of generalized tree is introduced and a fixed point

theorem is proved. This theorem contains the fixed point theorem for

trees and the recent result of K. Borsuk [l] that an arcwise con-

nected acyclic curve has the fixed point property.

2. Mobs and partially ordered spaces. A partially ordered topologi-

cal space (abbreviated POTS) is a space X together with a partial

order ^ defined on X such that ^ is semicontinuous in the sense that

L(x) = {a:a ^ x}    and    M(x) = [a'.x 5£ a]

are closed sets for each xEX. The partial order is continuous if it

has a closed graph in XXX. These spaces have been studied in [4].

A partially ordered set is order-dense if there exists z with x<z<y

whenever x<y. A zero of a partially ordered set is an element which

precedes all other elements of the set. We shall frequently write

[x, y] = M(x)C\L(y),

and

(x, y) =  [x, y] - x \J y.

An important class of POTS's is provided by the so-called cutpoint

ordering of locally connected continua. (In this paper a continuum

is a compact connected Hausdorff space.) If K is a locally connected

continuum, we choose eEK and define xgy if and only if x = e or

x = y or x separates e and y in K. It was proved in [4] that K, par-

tially ordered in this manner, is a POTS.

A tree is a special type of locally connected continuum. It is a con-

tinuum in which every pair of points is separated by some third point.

The following result was proved in [5].
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Theorem 1. Let X be a compact Hausdorff space. A necessary and

sufficient condition that X be a tree is that X admit a partial order g such

that

(i)   ^ is semicontinuous,

(ii)   ^ is order-dense,

(iii) if xEX and yEX, then L(x)C\L(y) is a nonempty chain,

(iv) if xEX, then M(x) —x is an open set.

In addition, we note

Theorem 2. If X is a tree then ^ is continuous.

Proof. It suffices to show that if x^y then there exist open sets

U and V, with xE U and yEV, such that a^b whenever aE U and

bE V. Since X is order-dense we may choose tEX such that t<x and

t£y. If U=M(i)-t and V = X — M(t) then U and V are open sets
with the desired properties.

It is easy to see that this ordering of a tree is always the cutpoint

ordering.

A mob as defined by Wallace and others is an associative Hausdorff

semigroup with continuous multiplication. There is an extensive bib-

liography on mobs in [3]. The mob 5 is monotone if multiplication is

a monotone function, i.e., if the set of pairs (a, b) such that ab = x is

connected in SXS for all xES. Define x^y in 5 if and only if xy = x.

This relation is transitive but is not, in general, a partial order and

may even be vacuous.

Theorem 3. If S is an idempotent commutative mob, then S is a

POTS. If, in addition, L(x) is compact for some xES, then S is a

POTS with zero.

Proof. That S is reflexive, anti-symmetric, and transitive (and

hence a partial order) follows from the idempotence, commutativity,

and associativity, respectively, of S. To show that M(x) is closed for

all xES, suppose yES — M(x) and let V = S — x. Since multiplication

is continuous there exists a neighborhood U of y such that Ux C V.

If there exists tE UC\M(x) then tx = xE V which is a contradiction.

To show that L(x) is closed, suppose yES — L(x) and V is an open set

such that

xyEVEV ES - y.

Again by continuity a neighborhood U of y may be chosen such that

U and V are disjoint and UxEV. If there exists tEUC\L(x) then

tx = tE Uf\ V which is a contradiction. Thus 5 is a POTS. The exist-
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ence of a zero in case some E(x) is compact is an immediate conse-

quence of Theorem 1 of [4].

For the remainder of this section it is understood that

m   (a) = {(x, y):xy = a},

w-i (a) = {x'.xb = a}.

Theorem 4. If S is an idempotent monotone mob then S is order-

dense.

Proof. If 5 is not order-dense then there exist elements x and y of

S such that x<y and (x, y) is empty. Therefore

mv (x) = M(x) — M(y).

Moreover, the transitivity of g implies that 217(y) EM(%) and conse-

quently

M(x) = m~\x) KJ M(y),

which is a decomposition of M(x) into disjoint nonempty closed sets.

On the other hand, 2l7(x) =irm~1(x), whereir:XXX—>X is the projec-

tion; since m is monotone, M(x) is connected. This is a contradiction.

Theorem 5. A necessary and sufficient condition that X be a tree is

that X be a compact idempotent commutative monotone mob such that if

ax = a and bx = b, then ab = a or ab = b.

Proof. Sufficiency. According to Theorems 1, 3, and 4 it is suffi-

cient to show that, if X is a mob of the desired type, then L(x)f~\L(y)

is always a nonempty chain and 2l7(x) —x is always open. That L(x)

is a chain follows from the condition: ax = a and bx = b implies ab = a

or ab = b; since X has a zero, L(x)C\L(y) is nonempty. Suppose

yEM(x) — M(x)°, and let V be a neighborhood of y=y2. By con-

tinuity there is a neighborhood 27 of y such that 27y C F. Since 27

meets X — M(x) it follows that 27y meets L(x) and hence yEL(x)

= L(x). Therefore x=y so that 2l7(x)0 = il7(x) — x.

Necessity. If X is a tree endowed with the partial order of Theorem

1, then the operation

xy = sup L(x) C\ L(y)

is obviously commutative and idempotent; further, the fact that

L(x) is a chain implies that whenever ax = a and bx = b, then ab = a or

ab=b. To see that multiplication is continuous, consider the case

where x and y are not comparable. (The case x^y follows in a similar
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manner.) Let U be a neighborhood of xy and let Vx = M(t)— t, Vy

= M(s) —s where / and 5 are chosen so that xy<t<x, xy<s<y. The

sets Vx and Vy are neighborhoods of x and y respectively and

VXVV = xyEU.

Finally, to show that multiplication is monotone we note that

mr\z) = wmr^z) X irmr\z) = M(z) X M(z).

Since M(z) is connected, so is m~l(z).

The previously mentioned fixed point theorem for trees can now

be stated in the language of mobs. However, in §4 a more general re-

sult will be obtained.

3. Generalized trees and hereditary unicoherence. Modifications

of conditions (i) and (iv) of Theorem 1 are introduced.

(i')   ^ is continuous,

(iv') if Y is a closed and connected subset of X, then Y contains a

zero.

A compact Hausdorff space X is said to be a generalized tree if and

only if X admits a partial order satisfying conditions (i'), (ii), (iii),

and (iv'). From Theorems 1 and 2, and the fact that the property of

being a tree is hereditary with respect to subcontinua, we have

Theorem 6. A tree is a generalized tree.

It is easy to construct examples of generalized trees which are not

locally connected and hence are not trees, so that the term "general-

ized" tree is an appropriate one. For example, in the plane let

i4_x = {(x, 0):0 g x g l},

A0= {(0, y):0^y^ lj,

An = <(—> y\.Q ^ y^l\ , n = 1, 2, • • •

and define

x= U \An}.
n—1

Define (xx, yi) ^(x2, y2) if and only if Xi^x2 and yi = 0, or Xi = x2 and

;yi^y2- It may be readily verified that X, together with this partial

order, is a generalized tree. However, X is not locally connected.

Theorem 7. A generalized tree is a hereditarily unicoherent con-

tinuum. Conversely, a hereditarily unicoherent continuum which admits
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a partial order with zero satisfying (i') and (ii) is a generalized tree.

Proof. The order-denseness of the partial order ensures that, if

A" is a generalized tree, then X is connected and hence is a continuum.

To demonstrate that X is hereditarily unicoherent it will first be

shown that if A is a subcontinuum of X and if a and b are elements

of A such that a<b then [a, b] EA. For if not then a and b may be

so chosen that (a, b)C\A is empty. Let a<p<b and let 27 be an open

set such that L(a) E 27 and UC\M(p) is empty. If B is the component

of A — U which contains b, then according to (iv') B must have a

zero, but, since B(~\L(b)=b, that zero must be b itself and hence

B EM(b). Therefore B(~\ U is empty, which contradicts a well-known

theorem that 27 must contain a limit point of each component of

A — 27. Consequently [a, b] EA. Suppose now that A and B are sub-

continua of X and that x and y are elements of AC\B. If z = sup L(x)

r\L(y), it follows that

Z = [z, x] \J [z, y] E A n B.

Since Z is connected, so is A C\B and therefore X is hereditarily uni-

coherent.

To prove the converse, assume that A" is a hereditarily unicoherent

continuum admitting a partial order which is continuous, order-

dense, and has a zero. If xEX and if 7(x) contains noncomparable

points a and b, then the continua L(a)\J[a, x] and L(b)\J[b, x] have

a nonconnected intersection. Thus the hereditary unicoherence of X

implies that L(x) is a chain. If Y is a subcontinuum of X and if Y

contains two distinct minimal elements, h and t2, then the continua

L(ti)\JL(t2) and Y have a nonconnected intersection. Therefore Y

has a zero, and the theorem is proved.

We conclude this section with two more characterizations of trees.

Theorem 8. Let X be a locally connected continuum. A necessary and

sufficient condition that X be a tree is that the outpoint ordering be order-

dense.

Proof. The necessity follows at once from [S]. To prove the

sufficiency we must show that if x and y are distinct elements of X

then there exists pEX separating x and y. If x<y in the cutpoint

ordering then x = e or

X - x = AXU Bx,       Ax\ Bx,

eEAx,        yEBx,

where Ax is a component of X — x. Let x<p<y. If x = e then p sepa-
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rates x and y by the definition of the cutpoint ordering. If xj^e then

X - p = AP\J Bp,       AP\BP,

eEAp,       y E Bp,

and pEBx. Since Ax is connected it follows that AXEAP so that p

separates x and y. If x and y are not comparable, let z = sup L(x)f\L(y)

and choose p such that z<p<y. As in the case just considered the

separation (1) occurs with zEAp. Since BP\Jp = M(p) and p<x, it

follows that p separates x and y.

Theorem 9. A necessary and sufficient condition that X be a tree is

that X be a hereditarily unicoherent locally connected continuum.

Proof. Necessity. By Theorem 7 any generalized tree, and hence

any tree, is hereditarily unicoherent. By Lemma 4 of [5], a tree is a

locally connected continuum.

Sufficiency. Fix eEX; it is clear that hereditary unicoherence im-

plies that for each xEX there is a unique irreducible continuum L(x)

joining e and x. Let x^y mean that L(x)CL(y). To complete the

proof it is sufficient to show that g is the cutpoint ordering. Suppose

X — p = APKJ BP,       AP\BP,       eEAP,

where Ap is connected. Clearly, L(p)EL(x) if and only if xEBp,

i.e., if p separates e and x.

4. A fixed point theorem. The following theorem is a slight gen-

eralization of the recent result of K. Borsuk mentioned in §1. They

coincide for generalized trees in which chains are assumed to be

separable. The methods of proof are substantially different.

Theorem 10. If X is a generalized tree andf(X)EX is continuous,

then f(x) =x for some xEX.

Proof. Since X has a zero, the set

P = {x:x t%f(x)}

is nonempty. Let C be a maximal chain of P and x = sup C; we first

show that xEP and hence that P contains a maximal element. If

xEX-P then
y = sup L(x) H L(f(x)) < x

and there exists in C an increasing net xa such that y<xa<x and

lim xa = x. Since f(xa) G M(xa) for each a and since lim /(xa) =/(x) it

follows that

f(x)E 0 {M(xa)} = K.
a
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The set K, being the intersection of a nested collection of continua,

is a continuum, and therefore K has a zero, k. Thus k is a proper

predecessor of both x and f(x) and it follows that, for some a, k <xa.

But this implies that i7(xa) fails to contain K, a contradiction. Thus

x^/(x) and x is maximal with respect to this property. If x</(x)

let x<z<f(x), and note that, by the maximality of x in P,

f([x, z]) C\ M(z) -/(*).

Consequently the two continua [z, f(x)] and

f([x,z})\JL(f(z))\JL(z)

meet in the disconnected set z*Uf(x), which contradicts the hereditary

unicoherence of X. Therefore x=/(x).
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