REMARK ON MY PAPER "ON A THEOREM OF J. L. WALSH"

ARYEH DVORETZKY

The theorem in the paper mentioned above, which appeared in these Proceedings (vol. 7 (1956) pp. 363–366), should be reworded to read as follows:

Let f(x) and $f_n(x)$ $(n=1, 2, \cdots)$ be p times differentiable in the interval a < x < b and let

(2)
$$\lim_{n=\infty} \inf_{x\in I, y\in I} \left| f_n(y) - f(x) \right| = 0$$

for every open sub-interval I of (a, b). Then, given any $x_0 \in (a, b)$ and any open sub-interval (α, β) of (a, b) containing x_0 the sequence $N = \{n\}$ can be written as a union of two (not necessarily both infinite) sequences $N_1 = \{n_1\}$ and $N_2 = \{n_2\}$ in such a way that for every n_1 there exists $x_{n_1} \in (\alpha, \beta)$ for which

(3)
$$f_{n_1}^{(p)}(x_{n_1}) = f^{(p)}(x_0)$$

while, if N_2 is infinite, we have

(5)
$$\limsup_{n_2=\infty} \int_{x_0-h}^{x_0+h} \left| f_{n_2}^{(p)}(x) - f^{(p)}(x) \right| dx = o(h)$$

as $0 < h \rightarrow 0$. Moreover, if x_0 is not a local extremum point (in the wide sense) of $f^{(p)}(x)$ then the sequence N_2 may be taken as finite and the x_{n_1} satisfying (3) may be taken so that we have

(4)
$$\lim_{n_1 = \infty} x_{n_1} = x_0.$$

The author is greatly indebted to Professor G. R. MacLane for calling his attention to the necessity of restating the theorem. An interesting supplement to the above is given in a note by G. R. MacLane (see this issue of Proceedings pp. 897–898).

HEBREW UNIVERSITY, JERUSALEM, ISRAEL.

Received by the editors October 8, 1956.